

AN ARCHITECTURE FOR THE UNIFRAME RESOURCE DISCOVERY SERVICE

A Thesis

Submitted to the Faculty

of

Purdue University

by

Nanditha Nayani Siram

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

May 2002

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2002 2. REPORT TYPE

3. DATES COVERED
 00-00-2002 to 00-00-2002

4. TITLE AND SUBTITLE
An Architecture for the Uniframe Resource Discovery Service

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Indiana University/Purdue University,Department of Computer and
Information Sciences,Indianapolis,IN,46202

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

205

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ii

To Amma, Nana, and Kishan.

iii

ACKNOWLEDGMENTS

Being a graduate student at the Department of Computer and Information Science,

Indiana University-Purdue University-Indianapolis has been a great learning experience

for me. The knowledge gained will be valuable to me for the rest of my life.

 I would like to take this opportunity to thank the many people who have helped

make this thesis possible.

First and foremost, I would like to thank Professor Rajeev R. Raje, my advisor,

for his constant encouragement and guidance through the course of my graduate studies

and thesis. His immense knowledge and insights provided a strong foundation for this

thesis. He constantly challenged me to achieve greater heights and realize my full

potential. Dr. Raje, I thank you once again.

 My special thanks to Professor Andrew Olson for being on my advisory

committee and providing me guidance during critical periods of my thesis. His

painstaking efforts to review my thesis and work are greatly appreciated.

 I would like to thank Professor Yung-Ping Chien for being on my advisory

committee and providing valuable inputs towards the thesis.

Special thanks to my colleague, Muris Ridzal, for his assistance in the testing of

the URDS prototype.

I would like to thank the U.S. Department of Defense and the U.S. Office of

Naval Research for supporting this research under the award number N00014-01-1-0746.

 Many thanks to the faculty, staff and all my colleagues at the Department of

Computer and Information Science for their cooperation and goodwill.

 Finally, I would like to thank my parents, and my husband Kishan Siram for their

love, encouragement and support.

iv

TABLE OF CONTENTS

Page

TABLE OF CONTENTS... iv

LIST OF TABLES.. vii

LIST OF FIGURES ... viii

ABSTRACT.. x

1. INTRODUCTION .. 1

1.1 Problem Definition and Motivation.. 2

1.2 Objectives: Statement of Goals... 4

1.3 Contributions of this thesis ... 5

1.4 Organization of this thesis .. 6

2. BACKGROUND AND RELATED WORK .. 7

2.1 Resource Discovery Protocols .. 7

2.1.1 Lookup (Directory) Services and Static Registries.. 8

2.1.2 Discovery Services... 11

2.1.3 Features of Resource Discovery Protocols .. 18

3. OVERVIEW OF UNIFRAME APPROACH (UA) AND UNIFRAME RESOURCE

DISCOVERY SERVICE (URDS).. 21

3.1 UniFrame Approach (UA) and UniFrame Resource Discovery Service (URDS) . 21

3.2 Unified Meta-Component Model (UMM).. 22

3.2.1 Components ... 22

3.2.2 Services and Service Guarantees ... 23

3.2.3 Infrastructure.. 23

v

3.3 Specification of Components in UniFrame .. 24

3.4 Query and Description of Target Code Architecture.. 28

3.5 Overview of the URDS Architecture.. 29

3.5.1 Interaction of URDS Components ... 33

3.6 The UniFrame Approach (UA)... 37

3.6.1 Component Development and Deployment Process.. 38

3.6.2 Automated System Generation and Evaluation based on QoS........................ 39

4. URDS ARCHITECTURE .. 41

4.1 Internet Component Broker .. 42

4.1.1 Algorithm for ICB Initialization .. 43

4.2 Domain Security Manager (DSM).. 44

4.2.1 Group Membership Control (GMC) .. 45

4.2.2 Secure Communication.. 46

4.2.3 Key Distribution... 47

4.2.4 Algorithms for DSM Functions ... 48

4.3 Query Manager (QM) ... 54

4.3.1 Result Selection Process .. 54

4.3.2 Query Handling Process .. 56

4.3.3 Algorithms for QM Functions ... 57

4.4 Link Manager (LM) .. 64

4.4.1 Algorithms for LM Functions.. 65

4.5 Adapter Manager (AM) .. 70

4.5.1 Algorithms for AM Functions ... 70

4.6 Headhunters .. 73

4.6.1 Algorithms for HH Functions .. 75

4.7 Meta-Repositry (MR) ... 80

4.8 Active Registry (AR) .. 81

4.8.1 Algorithms for AR Functions .. 82

4.9 Services... 88

vi

5. IMPLEMENTATION OF THE URDS ARCHITECTURE... 89

5.1 Technology ... 89

5.1.1 Web Servers and Application Servers ... 89

5.1.2 JavaTM 2 Platform Enterprise Edition (J2EETM) .. 90

5.2 Prototype Implementation... 95

5.2.1 Platform and Environment ... 96

5.2.2 Communication Infrastructure ... 96

5.2.3 Security Infrastructure.. 97

5.2.4 Programming Model .. 97

5.3 Experimental Results .. 115

5.4 Implementation Strategies for Enhancing the Prototype 118

6. CONCLUSION... 123

6.1 Features of URDS... 123

6.1.1 Interoperability... 123

6.1.2 Discovery Mechanism ... 124

6.1.3 Service Description.. 125

6.1.4 Client Query and Matchmaking... 126

6.1.5 Domain of Discovery ... 127

6.1.6 Security .. 127

6.1.7 Quality of Service .. 128

6.2 Future Work.. 129

6.2.1 Extensions to the Prototype Implementation ... 129

6.2.2. Enhancements of the URDS Architecture ... 130

6.3 Summation .. 131

APPENDIX... 133

Source Code.. 133

LIST OF REFERENCES.. 190

vii

LIST OF TABLES

Table Page

2.1. Comparison of the Features of the Directory and Discovery services..................19

3.1. Description of URDS components..31

3.2. Interactions between URDS components ...33

4.1. Data Structure for DSM functions ..48

4.2. Data Structure for QM functions ..57

4.3. Data Structure for LM functions...65

4.4. Data Structure for AM functions ..70

4.5. Data Structure for HH functions ...75

4.6. Data Structure for AR functions ...82

viii

LIST OF FIGURES

Figure Page

3.1 URDS Architecture. ...24

3.2 Example of Informal Natural Language-based Uniframe Specification26

3.3 Example of translated XML-based UniFrame Specification.................................27

3.4 Example of a Processed XML-based Query..29

3.5 Federated Hierarchical Organization of ICBs..30

3.6 Example of Search Results. ...35

3.7 UniFrame Approach...37

3.8 Component Development and Deployment Process..38

3.9 Automated System Generation and Evaluation. ..40

4.1 Components of the URDS Architecture. ..41

5.1 Interaction between Clients, Web Servers and Application Servers.90

5.2 Components and Containers of J2EE Model. ..91

5.3 URDS Implementation...95

5.4 Class Diagrams for the URDS Entity Objects. ..99

5.5 Class Diagrams for the Data Access Objects...100

5.6 Class Diagrams for the Dependent Objects. ..102

5.7 DSM_Repository. ..104

ix

 Page

5.8 Meta_Repository..105

5.9 Example of a Stand-Alone Remote Accessible Service Component...................107

5.10 Class Diagrams for the Service Components...108

5.11 UniFrameQuery.jsp View. ...111

5.12 UniFrameQuery.jsp View Continued. ...112

5.13 ComponentList.jsp View. ..112

5.14 ComponentDetail.jsp View..113

5.15 Variation of Tquery, Tdiscovery , Tinfo-retrival with Ncomponent..117

5.16 Variation of Tquery, Tdiscovery , Tinfo-retrival with Tmcast..118

5.17 Improving Scalability with WLM..120

x

ABSTRACT

Siram, Nanditha Nayani, M.S., Purdue University, May 2002. “An Architecture for the
UniFrame Resource Discovery Service”. Major Professor: Rajeev Raje.

The software development for any large-scale, Distributed Computing System

(DCS) is a major challenge. One solution to address the design complexity of a DCS is

the "UniFrame" approach. UniFrame provides a comprehensive framework unifying

existing and emerging distributed component models under a common meta-model that

enables the discovery, interoperability, and collaboration of components via generative

software techniques. This thesis presents an architecture and implementation for the

resource discovery aspect of this framework, called the UniFrame Resource Discovery

Service (URDS). The proposed architecture addresses the following issues: a) the

dynamic discovery of heterogeneous software components which offer and utilize

services, and b) the selection of components meeting the necessary functional as well as

non-functional requirements (such as desired levels of QoS Quality of Service). The

thesis also compares the URDS architecture with other Resource Discovery Protocols,

outlining the gaps that the URDS is trying to bridge. In the URDS the native

registries/lookup services of various component models are extended to be ‘active’ (i.e.

listen/respond to periodic multicast announcements) and also have introspection

capabilities to discover not only the instances but also the specifications of the

components registered with them. “Services” in UniFrame are implemented in different

component models and described by their UniFrame specification outlining the

computational, functional, cooperational, auxiliary attributes and QoS metrics. The

URDS security model provides for the authentication of the principals involved, an

access control to multicast address resources, and an encryption of data transmitted.

1

1. INTRODUCTION

Component-based software design has been a growing trend in the development

of software solutions for distributed systems. The software realization of a distributed

computing system (DCS) is typically achieved by using the notions of independently

created and deployed components, with public interfaces and private implementations,

loosely integrating with one another to form a coalition of distributed software

components. Assembling such systems requires either automatic or semi-automatic

integration of software components, taking into account the QoS (Quality of Service)

constraints advertised by each component and the collection of components. The

UniFrame Approach (UA) [RAJ01, RAJ02] provides a framework that allows an

interoperation of heterogeneous and distributed software components and incorporates

the following key concepts: a) a meta-component model (the Unified Meta Model –

UMM [RAJ00]), with a associated hierarchical setup for indicating the contracts and

constraints of the components and associated queries for integrating a distributed system,

b) an integration of the QoS at the individual component and distributed application

levels, c) the validation and assurance of the QoS, based on the concept of event

grammars, and e) generative rules, along with their formal specifications, for assembling

an ensemble of components out of available component choices. The UniFrame approach

depends on the discovery of independently deployed software components in a

networked environment. In this thesis, an architecture and implementation for the

resource discovery aspect of this framework, called the UniFrame Resource Discovery

Service (URDS) is described. The URDS architecture provides services for an automated

discovery and the selection of components meeting the necessary QoS requirements

specified by a component assembler or system integrator. URDS is designed as a

2

Discovery Service wherein new services are dynamically discovered while providing

component assemblers with a Directory style access to services. The result of using

URDS, the UniFrame Approach (UA) and its associated tools is a semi-automatic

construction of a distributed system.

1.1 Problem Definition and Motivation

There has been an increase in the development of technologies for the dynamic

discovery of resources such as printers, mail-boxes, memory space and disk space that

are available in every network. The growth in the popularity of portable devices such as

laptops, PDAs, and cell phones which require configuration each time they attach to a

new network segment has also sparked the need for developing protocols which facilitate

spontaneous discovery and enable such devices to connect to these resources. However,

research in the area of dynamic discovery has been focused solely in the area of

discovering and configuring “devices”.

There is a need to bring about a change in paradigm from dynamic discovery

being purely “device” based to a “service” based approach. “Service” here refers to

applications developed using different distributed computing models, with public

interfaces and private implementation, that perform computation or actions on behalf of

client users. Several directory-based approaches exist for discovering services. These

directory-based discovery services are built around the publish-subscribe model wherein

services publish their interfaces with a central directory and clients discover these

services by contacting the directories. Prominent among these are Universal Description,

Discovery and Integration (UDDI) registry [UDD00], CORBA Trader Services [OMG

00], JavaTM Remote Method Invocation (RMI) [ORF97], Distributed Component Object

Model (DCOMTM) [MIC98], etc. However, almost all of these directory/registry services

do not assume the presence of other models. The interoperability, which they provide, is

limited mainly to the underlying hardware platform, operating system and/or

3

implementational languages. This defeats the underlying goal of discovery being

universal.

The problem that needs to be solved is to provide for a “service” discovery model

that is dynamic and encompasses services developed in diverse distributed computing

models.

The motivation for creating a universal dynamic resource discovery service is as

follows: The software systems in any organization constantly undergo changes and

evolutions. Moreover, these organizations may be geographically (or logically) dispersed

necessitating a communication between independently created and deployed components,

loosely integrating with one another to form a coalition of distributed software

components. In order to deal with the constant evolutions and changes in the software

systems, there is a need to rapidly create software solutions for distributed environments

using a component-based software development approach. The solution of decreeing a

Common Off The Shelf (COTS) environment, in an organization, will require creating an

ensemble of heterogeneous components, each adhering to some model. If reliable

software needs to be created for a DCS by combining components, then the quality of

service offered by each component needs to become a central theme of the software

development approach. Assembling such systems requires either automatic or semi-

automatic integration of software components.

The key to automating the process of assembling DCS is to have an

infrastructure, that allows for a seamless integration of different component models and

sustains cooperation among heterogeneous components. Such an infrastructure will need

to provide services to dynamically discover the presence of new components in the

search space which offer and utilize services, and allow for the selection of components

meeting the necessary functional as well as non-functional requirements (such as desired

levels of Quality of Service). The infrastructure will also need to provide translation

capabilities for specific models. The UniFrame Resource Discovery Service (URDS)

4

architecture, proposed in this thesis, is designed to provide this infrastructure to support

universal dynamic resource discovery.

1.2 Objectives: Statement of Goals

The objectives of this thesis are:

• To bring about a shift in paradigms in the field of spontaneous resource discovery

from a “device” based discovery approach to a “service” based discovery approach.

Traditionally the field of dynamic resource discovery has been oriented towards

spontaneous discovery of “devices”. This thesis aims to use discovery techniques to

detect “services” developed in diverse component models. The thesis also aims to

propose a framework wherein the dynamic resource discovery service will be coupled

with a container for adapters to provide integration broker capabilities.

• To propose an architecture structured as a platform independent design specification

for the URDS. The architecture will address the issues of scalability, adoptability,

security and fault tolerance and aim to provide an encompassing view of the end

service, computation and middle support required. The architecture will provide

details of the information specifications, configurations of the interacting components

including detailed algorithms of the functions required to support distributed

interaction between objects and an analysis of these algorithms.

• Develop a proof-of-concept prototype for the URDS and validate the principles

behind URDS.

• Indicate the inter-relations between the URDS and other components of UniFrame.

5

1.3 Contributions of this thesis

The contributions of this thesis are:

• Provides a comprehensive survey of the existing resource discovery services detailing

their characteristics. The survey outlines the purpose of existing resource discovery

services and establishes the need for the development of a resource discovery service

which is capable of bridging the interoperability gap that is inherent is current

discovery services.

• Proposes a novel approach to discovering services dynamically based on the concept

of extending the native registries of different component models to be ‘active’ and

‘introspective’. The architecture proposed also automates the process of selecting

components based on their computational, cooperational, auxillary attributes and QoS

metrics.

• Proposes a framework wherein the dynamic resource discovery service can be

coupled with a container for adapters to provide integration broker capabilities.

• Proposes a platform independent architectural model for the UniFrame Resource

Discovery Service. The following aspects of the URDS architectural model are

presented at appropriate levels of abstraction:

o Information Aspect describing the scope and nature of information

specifications.

o Computational Aspect describing the configurations of the interacting

computational objects.

6

o Engineering Aspect wherein the mechanisms and functions required to

support distributed interaction between objects is described.

o Technology Aspect wherein a detailed description of the components and the

technology used to realize the system is presented.

1.4 Organization of this thesis

This thesis is organized into 6 chapters. The introduction of the problem domain,

problem statement, definition of goals and the contributions of the thesis were presented

in this chapter. Chapter 2 provides a survey of the existing resource discovery services

and establishes the need for a meta-level “service” based discovery service. Chapter 3

provides an overview of UA and URDS and outlines the design concepts on which the

URDS architecture is based. Chapter 4 describes the URDS architecture focusing on the

high-level design, and the algorithms and interactions of the components that comprise

the architecture. Chapter 5 describes a prototype implementation and its validation

through experimentation. Finally, this thesis concludes with a discussion of the features

of URDS in comparison with other resource discovery services in Chapter 6.

7

2. BACKGROUND AND RELATED WORK

 This chapter provides a survey of existing resource discovery protocols under the

categories of directory-based and discovery-based services. Section 2.1.1 describes

various directory services. Section 2.1.2 describes various discovery services. A

comparison between the features of directory-based and discovery-based resource

discovery services is presented in Section 2.1.3.

2.1 Resource Discovery Protocols

Resource Discovery Protocols perform the task of identifying resources on a

network and making these resources accessible to users and applications. Resources may

include various services such as web services, component services, or devices such as

conventional computers, hand held computers (PDAs), peripheral devices such as

printers, and specialized network devices such as digital cameras, and telephones. The

protocols for resource discovery are presented under the following two categories:

o Lookup (Directory) Services and Static Registries.

o Discovery Services.

The primary difference between ‘discovery’ and ‘lookup’ services is that a

discovery service usually supports lookup, but many ‘lookup’ services do not support

discovery [MCG00]. A detailed discussion of these categories is presented in the

following subsections.

8

2.1.1 Lookup (Directory) Services and Static Registries

Lookup as defined by McGrath in [MCG00] refers to the “process of locating a

specific object or resource either by exact name or address, or by some matching

criteria. Lookup is ‘passive’, in that it is initiated by a seeker, and requires the existence

of some directory or other agent to answer the request. Lookup may be done in a

statically configured environment; the directory need not be writable”. Some examples

of lookup services include Universal Description, Discovery and Integration (UDDI)

registry [UDD00], CORBA Naming and Trader Services [OMG00, OMG01], Light

Weight Directory Access Protocol (LDAP) [WAH97], Domain Name Service (DNS)

[MOC87], X.500 [COU01] and GNS [COU01]. The following subsections provide a

brief discussion of the above-mentioned ‘lookup’ services.

2.1.1.1 Universal Description, Discovery and Integration (UDDI) Registry

Universal Description, Discovery and Integration (UDDI) as defined in [UDD00]

is a “specification for distributed Web-based information registries of Web services i.e.,

UDDI specifications define a way to publish and discover information about Web

services.” The term “Web service” is defined in [UDD00] as - “A Web Service describes

specific business functionality exposed by a company, usually through an Internet

connection, for the purpose of providing a way for another company or software program

to use the service”. Since UDDI aims at providing an open specification and set of tools

for discovering Web Services on the Internet it utilizes the World Wide Web Consortium

(W3C) [W3C] standard service definition language - Web Services Description Language

(WSDL) [CHR01]. WSDL is an XML [BRA00] grammar for describing the capabilities

and technical details of Simple Object Access Protocol (SOAP) [BOX00]-based web

services. UDDI data is hosted by operator nodes, which are companies that are

committed to running a public node that confirms to the specifications governed by the

uddi.org consortium. Three public nodes exist which include Microsoft, IBM and HP

whose contents are synchronized regularly.

9

The components involved in the UDDI architecture are the Web Service

Providers, Service Requesters and Service Brokers (UDDI Business Registries).

The fundamental operations performed by these components are:

• Service providers deploy and publish services by registering them with the

Service Broker. The interaction with the Service Broker and the registration

process is done using the UDDI API. The UDDI APIs are in the form of SOAP-

based web services that fall into two categories, namely inquiry and publishing.

To invoke these APIs SOAP message is sent with the appropriate body content.

 Example: <find_business generic=‘1.0’ xmlns=‘urn:uddi-org:api’>

<name>XYZ industries </name>

 </find_business>

The SOAP response contains all businesses that match criteria and registered

services for each business in the form of XML data structure.

• Service requestors find services by searching the Service broker’s registry of

published services. Locating services is done via a combination of UDDI and

Web Services Description Language (WSDL).

• Service requestors bind to the Service provider and consume the available

services. Binding to Service Providers leverages information specified in WSDL

and the SOAP protocol.

2.1.1.2 CORBA Trader Services

The CORBA Trader Service [OMG00] provides “Yellow Pages” for objects,

enabling them to publicize/request services. The Trader Service facilitates ‘matchmaking’

between service providers (Exporters) and service consumers (Importers). The exporters,

which are CORBA objects, use the interfaces provided by the Trader Services to register

their services. The information about the service registered with the Trader comprises of

10

a reference to the object providing the service, information about the operations

supported such as their names, parameters and result types, and other properties

describing the capabilities of the service. The Trader stores the type descriptions in a

repository and also maintains a database of service objects. The clients or importers,

which are CORBA Objects, can query the Trader for a list of services registered with it or

make a request for a particular service by specifying the service type and properties

desired in the service. The trader will find a match for the client based on the search

criteria. Traders can be linked to form a federation of traders. This linkage of traders

allows a trader to make the offer spaces of other traders become implicitly available to its

own clients. The Trader Service does not guarantee that the registered objects are

available. It also does not provide notification and security features and needs to be

augmented with the CORBA event services and security services to provide these

features. The Trader Service is defined as CORBA interfaces, and all advertisements,

requests, and replies are CORBA objects. Since the Trader Services depends on CORBA,

all participants must be cast as CORBA objects and use CORBA protocols.

2.1.1.3 X.500 and Lightweight Directory Access Protocol (LDAP)

LDAP (Lightweight Directory Access Protocol) is a software protocol for

enabling anyone to locate organizations, individuals, and other resources such as files and

devices in a network, whether on the public Internet or on a corporate intranet. LDAP is a

"lightweight" (smaller amount of code) version of Directory Access Protocol (DAP),

which is part of X.500 [ITU97], a standard for directory services in a network. The

directory service is organized like a tree and is referred to as a Directory Information

Tree (DIT)[WIL99]. The LDAP data format is structured as a scalable hierarchy of name

spaces, with an added flexibility to form a relational grouping of entries. An entry in the

LDAP server is analogous to a record in a relational database. LDAP is extensible, and

allows storage of different kinds of information. LDAP’ s query model allows for search

and retrieval of entries stored in the LDAP directory server. Since LDAP is organized as

a hierarchy, the queries can be limited to particular parts of the hierarchy. Though the

11

design is scalable queries over very large domains are likely to be very inefficient. LDAP

does not have any built in security model and relies on other network services for this

purpose. LDAP does not specify protocols for “spontaneous” discovery and because of

the complexity; it may not be well suited for either near real-time discovery, or for very

large numbers of services [MCG00].

2.1.1.4 Global Name Service (GNS) and Domain Name Service (DNS)

Global Name Service [COU01] is designed to provide facilities for resource

location, mail addressing and authentication. GNS manages a naming database that is

composed of a tree of directories holding names and values.

Domain Name System (or Service), [MOC87], is an Internet service that translates

domain names into IP addresses. The DNS protocol provides static database of name-

address maps, which is hierarchically partitioned. The naming data is replicated and

cached in order to achieve scalability. Recent extensions to DNS support a very limited

set of service types and a few attributes that can be used to search [GUL96]. The types of

queries supported by DNS include host name resolution and reverse resolution, mail host

location, host information and well-known services information [COU01]. DNS is a

trusted service, security is provided by controlling access to a few privileged users.

Arbitrary user applications may not add or modify the DNS database.

2.1.2 Discovery Services

 “Discovery” refers to the spontaneous process, in which resources or services

‘discover’ other resources on the network, and present themselves to these other

resources.

12

Several protocols exist for service discovery, prominent among which are:

Service Location Protocol (SLP) [GUT99b], JINI [SUN01a], Ninja Project: Secure

Service Discovery Service (SSDS) [CZE99, NIN02], Salutation [SAL, SAL99a,

SAL99b], Bluetooth [BLU], Universal Plug and Play (UPnP) [CHR99, UPNP99], and

Simple Service Discovery Protocol (SSDP) [GOL99].

The following sections provide an overview of the above-mentioned discovery

services.

2.1.2.1 Service Location Protocol (SLP)

SLP Version 2 [GUT99a] is an Internet Engineering Task Force (IETF) standard

framework for resource discovery. SLP architecture comprises of the following

components:

• User Agents (UA): UAs perform service discovery on behalf of clients.

• Service Agents (SA): SAs advertise the location and characteristics of services.

• Directory Agents (DA): DAs act as directories which aggregate service

information received from SAs in their database and respond to service requests

from UAs.

DAs can be replicated or organized as hierarchical or graph of domains.

Discovery of DAs by UAs and SAs can be implemented in following

configurations:

• Active Discovery: SAs and UAs multicast SLP requests.

• Passive Discovery: DAs announce their presence by periodically multicasting

advertisement messages.

• Dynamic Host Configuration Protocol (DHCP) Options for SLP [PER99]: UAs

and SAs can locate DAs using DHCP wherein DHCP servers configured with this

option distribute the DA addresses to agents that require them.

13

SLP configuration allows the following two modes of operation [GOV00]:

• Without DAs: This requires no administration. UAs multicast or broadcast service

requests to SAs, which are listening on well-known ports. When a match is found

SAs respond to the UAs using unicast.

• With DAs: The protocol is more efficient, in this configuration. The UAs, SAs and

DAs are configured as members of a scope and communication takes place

between them only if they support the same scope. UAs and SAs communicate

with DAs, which are listening on well-known ports using unicast messages.

Services are advertised using a “Service URL” [GUT99a] and a “Service

Template”[GUT99c]. The Service URL comprises of the IP address of the service, the

port number, and path. Service Templates specify the attributes that characterize the

service and their default values. Service requests may match according to service type or

by attributes. SLP supports fairly powerful syntax for attribute matching based on

templates and LDAPv3 predicate [WAH97]. SLP supports authentication, but does not

specify it. It does not support encryption.

2.1.2.2 JINI

JINI is Java based framework for spontaneous discovery developed by Sun

Microsystems. [EDW99] JINI architecture [SUN01a] is similar to SLP. However, JINI is

very tightly bound to the Java environment. Each JINI device is assumed to have a Java

Virtual Machine (JVM) running on it. JINI uses Java Remote Method Invocation (RMI)

[RMI] protocol for communication, which supports exchange of serialized Java objects.

The main components of a JINI system and their functions are:

• Service: A service is a logical concept defined and identified by a Java interface.

The publicly visible part of the service, which is downloaded by the clients, is

referred to as the “service object” or “service proxy”. A service registers this

“service object” or “service proxy” with the Lookup service.

14

• Client: The client contacts the Lookup Service requesting a service and the

Lookup service returns it the “service object” or “service proxy” which is copied

to the client’s JVM and any further communication with the service by the client

is conducted through the proxy. The client request is basically a simple template

for matching string attributes. However, the request and the matching must be

implemented as Java objects, following JINI specified interfaces.

• Lookup Service (Service Locator): The Lookup Service serves as a directory of

available services. Lookup Service listens on a well-known port for unicast or

multicast messages. When Lookup service gets requests from services to register

them or from clients requesting services, it returns them a “registrar” object,

which serves as a proxy to the Lookup Service and runs on the service’s or

client’s JVM. Any requests, which are to be made of the Lookup service, can be

made through the proxy “registrar”.

The JINI Discovery protocol is used by JINI components (services, clients, lookup

services) to locate other relevant JINI components in the network. The discovery process

operates in the following two modes:

• Multicast: The discovery processes, in this mode are categorized as aggressive,

lazy and peer lookup. During aggressive discovery a JINI component transmits

probes at a fixed interval for a specified period, or until it has discovered a

sufficient number of Lookup services. Aggressive discovery only happens at

component initiation time. After completion of aggressive discovery the

component enters lazy discovery, where it listens for announcements sent at

intervals by lookup services. During lazy discovery a lookup service both listens

for announcements by other lookup services and sends its own announcements at

the required intervals. Peer Lookup [GOV00] is mentioned in the JINI

specification as a technique used by clients to discover services in the absence of

a lookup service. Clients multicast request packets and they receive direct

15

response from the services from which the clients can select the services they are

interested in and drop the rest.

• Directed: In this mode the components use a directed discovery process in which

the components have a list of lookup services to discover with which they try to

establish connection.

Other features of the JINI architecture include the concept of Leasing, Remote

Event Notifications and Transactions. Leasing mandates that all advertisements and

registrations are valid only for a specific period of time thus forcing all clients and

services to renew their leases periodically. Leases ensure that JINI recovers from crashed

entities as these are automatically purged from the lookup services when the lease expires

and periodic renewal of leases by entities rebuilds the global state in case of a Lookup

Server failure. Remote Event Notifications allows an object to transmit notifications of

events that have occurred within the object to other objects, which may have registered

their interest in such events. JINI Transactions provide for a set of wrapped operations

wherein an entire set of operations succeeds or fails without scope for partial success.

Some of the drawbacks of the JINI architecture include a limited filtering

mechanism as when compared to other services like LDAP, SLP, CORBA Trader

Service, or other XML based approaches. JINI cannot interoperate with any other

protocol or language environment. The devices must either implement a JVM, or else use

a proxy. JINI security is based on the weak security provided by Java and cryptography is

not mandatory.

2.1.2.3 Ninja Project: Secure Service Discovery Service (SSDS)

The SSDS [CZE99, NIN02] is part of the Ninja research project at University of

California, Berkeley. The main components of the SSDS system and their function in the

discovery process is as follows:

16

• Service Discovery Service (SDS) Servers: SDS Servers are organized into

hierarchical domains (domain specifies their network extent). The servers

periodically multicast authenticated messages containing the multicast address for

sending service announcements. The SDS servers cache the service descriptions

that are advertised in the domain.

• Services: The Services listen for SDS Server announcements and multicast the

service descriptions to the multicast address using authenticated, encrypted, one-

way service broadcasts.

• Clients: Clients discover the SDS server for their domain by listening to a well-

known SDS global multicast address. A client uses Authenticated RMI [CZE99,

WEL] to connect to the SDS server and submits a query in the form of an XML

template.

• Certificate Authority (CA): The SDS uses certificates signed by the CA to

authenticate bindings between principals (components in the SDS system) and

their public keys.

• Capability Manager (CM): The SDS uses capabilities as an access control

mechanism to enable services to control the set of users that are allowed to

discover their existence. The CM generates and distributes capabilities to all the

users.

The SSDS shares similarities with other discovery protocols, with significant

improvements in reliability, scalability, and security. SSDS is implemented in Java and

uses Java-RMI for remote calls. It uses XML for service description and location.

The protocol is designed as an exchange of XML “documents”, and service location is

implemented by matching of XML tags [CZE99, HOD99]. SSDS provides extremely

strong mandatory security: all parties are authenticated, and all message traffic is

encrypted. The security features supported include: assurance of authenticity of discovery

service, assurance of the privacy and authenticity of service descriptions, two-way

authenticated and encrypted remote method invocation, and capabilities to authenticate

17

all principals. The hierarchical organizations of the SDS Servers increases system

scalability and also serves for failure detection and automatic restart of failed servers.

2.1.2.4 Salutation

The Salutation protocol [SAL, SAL99a, SAL99b] is an open specification that

provides “spontaneous” configuration of network devices and services. The Salutation

architecture defines an abstract model with three components: Client, Server, and

Salutation Manager (SLM). The Salutation Manager manages all communication, and

bridges across different communication media as needed. Salutation defines its protocol

based on SunRPC. Salutation defines a specific (extensible) record format for describing

and locating services. This format includes service type (such as ‘ [PRINT]’) and

attributes (such as ‘ color’). Services advertise by registering with one or more Salutation

Managers. Clients locate services by sending service requests.

2.1.2.5 Universal Plug and Play (UPnP) and Simple Service Discovery Protocol (SSDP)

UPnP [CHR99, UPNP99] is a Microsoft standard for spontaneous configuration.

UPnP handles network address resolution, and coupled with the IETF proposal Simple

Service Discovery Protocol [GOL99], it provides higher-level service discovery. UPnP

has a similar architecture to Salutation and SLP, and was influenced by them. UpnP uses

XML for device/service description and queries, which brings it into the mainstream of

the evolving WWW. At the base, UPnP provides “simple discovery”, in which network

addresses are discovered. Advertisement is done by a local broadcast announcement.

When successful, “simple discovery” returns an IP address or URL plus a “device type”.

Services are described by extended URLs, similar to (but completely incompatible with)

SLP. The URL is for an XML file with an elaborate description of the device. Starting

with this URL, the SSDP defines a Web based discovery protocol, which uses HTTP

(with extensions).

18

2.1.2.6 Bluetooth Service Discovery Protocol

Bluetooth [BLU] is a new short-range wireless transmission protocol. The Bluetooth

protocol stack contains the Service Discovery Protocol (SDP), which is used to locate

services provided by a Bluetooth device. It is based on the Piano platform by Motorola

and has been modified to suit the dynamic nature of ad hoc communications.

2.1.3 Features of Resource Discovery Protocols

The underlying problem that all the resource discovery protocols are aiming solve

and the solutions to achieve the same can be broadly summarized as:

• Service Advertisement: Service Providers advertise their services by providing

their address and other necessary information. This advertisement could be

facilitated either by registration with a directory service or through multicast or

broadcast communication.

• Service Request: Service Consumers seeking services forward their request to

some centralized directory service or make known their request to the world again

through the process of multicast or broadcast communication.

• Match Making: The process in which service producers and consumers hook up.

This could again be facilitated through a directory service serving as the

intermediary or a direct discovery between producers and consumers. In the case

where the directory service serves as the intermediary. The discovery of the

service providers could again be spontaneous or through the registration process.

Issues such as reliability and scalability are handled either through a hierarchical

or federated organization. A comparison of the features of the Directory and Discovery

services is provided in the table 2.1 compiled based on the characteristics summarization

in [MCG00].

19

Feature List Directory Services Discovery Services

Information Storage and

Retrieval

Storage of information in

static databases, which can

be replicated for greater

scalability.

Spontaneous discovery and

configuration of network

services and devices. Some

Discovery services like

SSDS, JINI cache the

service information in

which case they

periodically update the

cache to reflect the global

state of the system.

Failure Detection Do not monitor the

resources for availability or

failure due to external

circumstances such and

node/link failure, etc. They

usually do not possess any

event generation

mechanisms either to

inform clients of resource

registration or withdrawal.

Automatically configure

according to service

availability.

Management Centralized control. Usually

maintained by privileged

administrators.

Decentralized management

with limited administration.

Search Semantics Usually provide lower

flexibility with respect the

search criteria that can be

specified.

Allows for selection of very

specific types of service.

Interoperability No interoperability between

different models or services.

Some services offer

interoperability through the

20

use of bridges and proxies.

Table 2.1. Comparison of the Features of the Directory and Discovery services

The Directory and Discovery Services described this chapter are mostly designed

for ‘closed’ systems, i.e., systems, although distributed in nature, are developed and

deployed in a confined setup. Such systems do not take advantage of the heterogeneity,

local autonomy and the open architecture that are characteristic of DCS. The URDS

architecture on the other hand is designed for ‘open’ systems by providing for the

discovery and interoperation of distributed heterogeneous software components. These

systems can be extended as new needs surface.

Chapter 3 provides an overview of the UniFrame Approach and the UniFrame

Resource Discovery Service.

21

3. OVERVIEW OF UNIFRAME APPROACH (UA) AND UNIFRAME RESOURCE
DISCOVERY SERVICE (URDS)

Chapter 2 provided descriptions of various resource discovery services under the

categories of directory and discovery services. This chapter provides an overview of the

UniFrame Approach (UA) and how it can be used for developing DCS. The chapter also

presents a brief discussion of the UniFrame Resource Discovery Service (URDS)

architecture outlining the design concepts on which the architecture is based. The detailed

description of the URDS architecture is presented in Chapter 4.

3.1 UniFrame Approach (UA) and UniFrame Resource Discovery Service (URDS)

The UniFrame Approach (UA) aims at facilitating an automatic or semi-automatic

creation of a DCS based on an integration of heterogeneous components. The UA

specifies a framework for component developers to create, test and verify from the point

of view of QoS, the components they develop and deploy on the network and for

component assemblers/system integrators to select and semi-automatically generate a

software solution for the DCS under consideration.

As indicated in Chapter 1, the Unified Meta-Component Model (UMM) proposed

in [RAJ00] is the central part of the UniFrame Approach. The following subsections

describe this meta-model.

22

3.2 Unified Meta-Component Model (UMM)

UMM consists of three entities: a) Components, b) Services and Service

Guarantees, and c) Infrastructure. URDS represents the infrastructural part of the UMM.

3.2.1 Components

Components in UniFrame are autonomous entities, whose implementations are

non-uniform, i.e., each component adheres to some distributed-component model but

there is no notion of a unified implementational framework. Each component has a state,

an identity, a behavior, well-defined interfaces and a private implementation. In addition,

each component in UMM has three aspects:

• Computational Aspect: The computational aspect reflects the task(s) carried out

by each component. It in turn depends upon: a) the objective(s) of the task, b) the

techniques used to achieve these objectives, and c) the precise specification of the

functionality offered by the component. The computational aspect of a component

is described by its inherent attributes (book-keeping aspects, e.g., author, version,

etc.) and functional attributes (formal aspects, i.e., computation, contracts and

levels of service).

• Cooperative Aspect: The cooperative aspect of a component indicates its

interaction with other components. Informally, the cooperative aspect of a

component may contain: i) Expected collaborators - other components that can

potentially cooperate with this component, ii) Pre-processing collaborators -

other components on which this component depends upon, and iii) Post-

processing collaborators - other components that may depend on this component.

23

• Auxiliary Aspect: In addition to computation and cooperation, mobility, security,

and fault tolerance are necessary features of a DCS. The auxiliary aspect of a

component addresses these features.

3.2.2 Services and Service Guarantees

Services in UniFrame could be a computational effort or an access to underlying

resources. In DCS, it is natural to have several choices for obtaining a specific service.

Thus, each component, in addition to indicating its functionality, must be able to specify

the quality of the service offered.

The Quality of Service (QoS) is an indication given by a software component

about its confidence to carry out the required services in spite of its constantly changing

execution environment and a possibility of partial failures. The QoS offered by each

component is dependent upon the computation performed, algorithm used, expected

computational effort and resources required, the cost of each service, and the dynamics of

supply and demand. The task of guaranteeing the necessary QoS is a key issue in any

quality-oriented framework. The UA to assuring the QoS of a DCS is made up of three

steps: a) the creation of a catalog of QoS parameters (or metrics), b) a formal

specification of these parameters, and c) a mechanism for ensuring these parameters, both

at each individual component level and at the entire system level. In [RAJ02, BRA02],

these three steps are described in detail.

3.2.3 Infrastructure

URDS is designed to provide the infrastructure necessary for discovering and

assembling a collection of components for building a DCS.

24

The URDS infrastructure (illustrated in Figure 3.1) comprises of the following

components: i) Internet Component Broker (ICB) which is a collection of the following

services - Query Manager (QM), the Domain Security Manager (DSM), Link Manager

(LM) and Adapter Manager (AM) ii) Headhunters (HHs), iii) Meta-Repositories, iv)

Active-Registries, v) Services (S1..Sn), and vi) Adapter Components (AC1..ACn). Figure

3.1 also illustrates the users (C1..Cn) of the URDS system who can be the Component

Assemblers, System developers or System Integrators. Section 3.5 provides a brief

overview of each of these components. The numbers in the Figure 3.1 indicate the flow

of activities in the URDS. These are explained, in detail, in the context of an example in

section 3.5.1.

 Figure 3.1. URDS Architecture

25

3.3 Specification of Components in UniFrame

UniFrame specifications are initially informally indicated in a natural language-

like style. This natural-language style specification indicating the computational,

cooperative, auxiliary attributes and QoS metrics of the component is refined into a more

standard XML-based specification during the Component Development and Deployment

Phase as described in Section 3.6.1. XML [BRA00] is selected as the standard for service

specification since it is general enough to express the required concepts, it is rigorously

specified, and it is universally accepted and deployed.

The XML-based UniFrame Service Specification, which represents the

information needed to describe a service, is comprised of:

• ID (or Service Type Name): A unique identifier, comprising of the host name on

which the component is running and the name with which this component binds

itself to a registry will identify each service.

 Example: intrepid.cs.iupui.edu/AccountServer1

• Component Name: The name, with which the service component identifies itself,

i.e., the class name of the implementation, which is instantiated at the time of

binding. This can be different from the name with which the component binds

itself to a registry.

Example: AccountServer

• Description: A brief description of this service component.

Example: Provides an account management system.

• Function Descriptions: A brief description of each of the functions supported by

the service component.

Example: javaDeposit, javaWithdraw, javaBalance

• Syntactic Contracts: A definition of the computational signature of the service

interface.

Example: void javaDeposit(float ip), void javaWithdraw() throws

OverDrawException, float javaBalance().

26

• Purpose: Overall function of the service component.

Exampe: Acts as an Account Server.

• Algorithm: The algorithms implemented by this component.

Example: Simple Addition/Subtraction

• Complexity: The overall order of complexity of the algorithms implemented by

this component. Example: O(1)

• Technology: The technology used to implement this component.

Example: CORBA, Java RMI, etc.

• QoS Metrics: Zero or more Quality Of Service (QoS) types. A QoS type name

defines the QoS value. Associated with a QoS type is the triplet of <QoS-type-

name, measure, value> where QoS-type-name specifies the QoS metric, for

example, throughput, capacity, end-to-end delay, etc. Measure indicates the

quantification parameter for this type-name like methods completed/sec, number

of concurrent requests handled, time, etc. Value indicates a

numeric/string/boolean value for this parameter.

Example: <Availability,%,90>. A catalog of Quality of Service parameters and

their metrics to be used in UniFrame specifications are indicated in [BRA02].

Figure 3.2. Example of Informal Natural Language-based Uniframe Specification

27

Figure 3.2 illustrates an example of an informal natural language-like style

UniFrame specification. This example is for a Java-RMI based bank account

management system with services for deposit, withdraw, and check balance.

The informal natural language-like specification in Figure 3.2 is translated into an

XML-based UniFrame specification illustrated in Figure 3.3.

 Figure 3.3. Example of translated XML-based UniFrame Specification

28

Various aspects in the service specification can be identified through the nodes in the

XML specification. Nodes can be single valued or multi-valued in which case they can

hold multiple child nodes. For example; the node ComponentName which introduces the

name of the service component is a single valued node, whereas the node

FunctionDescription which introduces the names of the functions supported by the

service component has multiple child nodes each named Function.

3.4 Query and Description of Target Code Architecture

The UniFrame approach allows the system developers/components

assemblers/system integrators to present a query to the system in natural language-like

style. This query is passed through a language query processor, which extracts the key

words, constraints, and preferences from the query and applies a knowledge base of the

domain maintained with it, to the query to construct an XML-based query. The XML-

based query is further processed into a structured query language (SQL) statement during

the process of matchmaking.

 The general form of a query is a request to create a system that has certain QoS

parameters. The name of the system is important in identifying the application domain

and the QoS parameters help identify desired properties of the system. A sample query

can be stated informally as: Create an account management system that has

availability>50% and end-to-end delay < 50ms with preference maximum availability.

(The preference can be specified to indicate that if there are multiple solutions satisfying

the requirements, then the search results returned to the developer need to be sorted in the

order of greatest availability). The natural language-like query is processed into an XML-

based query as depicted in Figure 3.4

29

Figure 3.4. Example of a Processed XML-based Query

During matchmaking the above XML based query is further translated into the

following structured query language (SQL) statement: SELECT * FROM

componentTable A, functionTable B WHERE (A.ID = B.ID) AND ((description LIKE

%account%) OR (description LIKE %system%)) AND (end2endDelay < 50) AND

(availability > 50).

The above SQL statement is specific to the implementation. The URDS

architecture proposes that the UniFrame specification be stored in a database (Meta-

Repository) so that the natural language-like query can be translated into a structured

query language statement and executed against the tables of the database to find a match

for the query. In the sample SQL statement shown the terms componentTable,

functionTable refer to the database tables in which the parsed UniFrame specification is

stored. The componentTable maintains the details associated with the component name,

description, computational, cooperating, auxillary attributes, and QoS metrics. The

functionTable holds details associated with function names and their associated syntactic

contracts. The terms description, end2endDelay and availability correspond to the

column names of the componentTable. The implementation specific details of terms are

explained in subsection 5.2.4.1.1.3 of chapter 5.

3.5 Overview of the URDS Architecture

The URDS architecture is organized as a federated hierarchy in order to achieve

scalability. Figure 3.5 illustrates this hierarchical organization. Every ICB has a one level

30

hierarchy of zero or more Headhunters attached to it. The ICBs in turn are linked together

with unidirectional links to form a directed graph. The URDS discovery process is

“administratively scoped”, i.e., it locates services within an administratively defined

logical domain. ‘Domain’ in UniFrame refers to industry specific markets such as

Financial Services, Health Care Services, Manufacturing Services, etc. The domains

supported are determined by the organizations providing the URDS service.

Figure 3.5. Federated Hierarchical Organization of ICBs

The URDS discovery protocol is based on periodic multicast announcements. The

multicast communication is subject to various security threats, such as eavesdropping,

uncontrolled group access and masquerading. URDS addresses the security threats faced

in the scenario of a discovery process. The security model of URDS provides for

authentication of the principals involved, an access control to multicast address resources,

and an encryption of the data transmitted. The model does not at this stage provide for

elaborate protocols for establishing keys, passwords, etc. These are considered as future

enhancements and are mentioned in Chapter 6.

31

The URDS architecture is designed to handle failures through periodic

announcements (in case of Headhunters), ‘heartbeat’ probes (in case of Link Managers)

and information caching. A lack of communication from the recipients of the

communication beyond a designated time range is deemed as a failure of that component

and the state of the system is accordingly reset. The caches of the Headhunter and Link

Manager are updated based on the responses received from ActiveRegistries and Link

Managers in other ICBs respectively or purged based on lack of them.

Table 3.1 gives a brief description of each of the components that comprises the

URDS architecture. The elaborate details are provided in the next chapter.

Internet

Component

Broker

(ICB)

The ICB acts as an all-pervasive component broker in an interconnected

environment. It encompasses the communication infrastructure

necessary to identify and locate services, enforce domain security and

handle mediation between heterogeneous components. The ICB is not a

single component, but a collection of services comprising of the Query

Manager (QM), the Domain Security Manager (DSM), Adapter

Manager (AM), and the Link Manager (LM). These services are

reachable at well-known addresses. It is envisioned that there will be a

fixed number of ICBs deployed at well-known locations hosted by

corporations or organizations supporting this initiative.

Domain

Security

Manager

(DSM)

The DSM serves as an authorized third party that handles the secret key

generation and distribution and enforces group memberships and access

controls to multicast resources through authentication and use of access

control lists (ACL). DSM has an associated repository (database) of

valid users, passwords, multicast address resources and domains.

Query

Manager

(QM)

The purpose of the QM is to translate a system integrator’s natural

language-like query into a structured query language statement and

dispatch this query to the ‘appropriate’ Headhunters, which return the

32

list of service provider components matching these search criteria

expressed in the query. ‘Appropriate’ is determined by the domain of

the query. Requests for service components belonging to a specific

domain will be dispatched to Headhunters belonging to that domain.

The QM, in conjunction with the LM, is also responsible for

propagating the queries to other linked ICBs.

Link

Manager

(LM)

The LM serves to establish links with other ICBs for the purpose of

federation and to propagate queries received from the QM to the linked

ICBs. The LM is configured by an ICB administrator with the location

information of LMs of other ICBs with which links are to be

established.

Adapter

Manager

(AM)

The AM serves as a registry/lookup service for clients seeking adapter

components. The adapter components register with the AM and while

doing so they indicate their specialization, i.e., which component

models they can bridge efficiently. Clients contact the AM to search for

adapter components matching their needs.

Headhunter

(HH)

The Headhunters perform the following tasks: a) Service Discovery:

detect the presence of service providers (Exporters), b) register the

functionality of these service providers, and c) return a list of service

providers to the ICB that matches the requirements of the component

assemblers/system integrators requests forwarded by the QM. The

service discovery process performs the search based on multicasting.

Meta-

Repository

(MR)

The Meta-Repository is a data store that serves a Headhunter to hold the

UniFrame specification information of exporters adhering to different

models. The repository is implemented as a standard relational database.

Active

Registry

(AR)

The native registries/lookup services of various component models

(RMI, CORBA, Voyager) are extended to be able to listen and respond

to multicast messages from the Headhunters and also have introspection

capabilities to discover not only the instances, but also the specifications

of the components registered with them.

33

S1..Sn

Services implemented in different component models (RMI, CORBA,

etc.,) identified by the service type name and the component’s informal

UniFrame specification which is an XML specification outlining the

computational, functional, cooperational and auxiliary attributes of the

component and zero or more QoS metrics for the component.

AC1..ACn Adapter components, which serve as bridges between components

implemented in diverse models.

C1..Cn Component Assemblers, System Integrators, System Developers

searching for services matching certain functional and non-functional

requirements.

Table 3.1. Description of URDS components

3.5.1 Interaction of URDS Components

Table 3.2, outlines the interactions between the URDS components in servicing a

query for assembling an account management system. This example assumes the

presence of a pair of Java RMI server and Java RMI client programs, and a pair of

CORBA server and CORBA client programs, which are available to construct the

account management system. The rows of the table are numbered corresponding to the

flow of control shown in Figure 3.1. The result of this interaction will be an ensemble of

components, which may be assembled into a complete system as described in Section

3.6.2.

1

This indicates the interactions between the principals (Headhunters/Active

Registries) and the DSM.

The principals contact the DSM with their authentication credentials in order to

obtain the secret key and the multicast address for the group communication (many

to one interaction).

Example credentials:

<name=“Headhunter1”,password=“xxxxx”,domain=“financial”>

34

<name=“registry2”,password=“yyyyy”, domain=“financial”>

The DSM authenticates the principals and returns a secret key and multicast

address to a valid principal (one to many interaction).

 Example response:

<secretkey = keyforFinancialDomain, multicast_address=“224.2.2.2”>

2 This indicates the interactions between Service Exporter Components and active

registries.

The service exporter components register with their respective registries (many to

one interaction).

Example: <id=“intrepid.cs.iupui.edu/AccountServer”>

These registries in turn query these components for their UniFrame Specification

(one to many interaction).

Example: <introspect property = “UniFrameSpecURL”>

The components respond with the URL at which the specification is located (many

to one interaction).

Example: <url=“C:\Account System\AccountServerSpec.xml”>

3 This indicates the interactions between Headhunters and Active Registries.

Headhunters periodically multicast their presence to multicast group addresses (one

to many interaction).

Example message: <Headhunterlocation=phoenix.cs.iupui.edu/Headhunter1>

Active Registries, which are listening for the multicast messages from the

Headhunters at this group address, respond to Headhunter’s multicast messages by

passing their contact information to the Headhunter (many to many interaction).

Example: <registrylocation=magellan.cs.iupui.edu/registry2>

Headhunters query the active registries, which respond to their announcements, for

the UniFrame specification information of all the components registered with them

(one to many interaction).

The active registries respond by passing to the Headhunter the list of components

registered with them and the detailed UniFrame specification of these components

(many to many interaction).

35

4 This indicates the interactions between a Headhunter and a Meta-Repository.

Headhunters store the component information obtained from the active registries

onto the Meta-Repository (one to one interaction).

Headhunters query the Meta-Repository to retrieve component information (one to

one interaction).

Example:

<SQL statement = “SELECT * FROM componentTable A, functionTable B

WHERE (A.ID = B.ID) AND ((description LIKE %account%) OR (description

LIKE %system%)) AND (end2endDelay < 50) AND (availability > 50)”>

Meta-Repository returns search results to Headhunter (one to one interaction).

5 This indicates the interactions between the QM and Component

Assemblers/System Integrators.

System Integrators contact the QM and specify the functional and non-functional

search criteria. The System Integrators can optionally specify the domain for their

query or allow the natural language processor of the QM to determine the domain

of the query. (many to one interaction).

Example: The natural language-like system integrator query is as follows:

<NL Query=“Create an account management system that has end-to-end delay <

50 ms and availability> 50% with preference maximum availability.”>.

The QM returns the search results to the clients (one to many interaction).

Figure 3.6 depicts an example of the search results returned to the system

integrator.

 Figure 3.6. Example of Search Results.

36

6 This indicates the interaction between the QM and DSM.

QM contacts DSM for contact information of registered Headhunters belonging to

the domain of client query (one to one interaction).

DSM responds with the list of registered Headhunters (one to one interaction).

Example:

< phoenix.cs.iupui.edu/Headhunter1, magellan.cs.iupui.edu/Headhunter2>

7 This indicates the interactions between the QM and Headhunters.

The QM propagates the System Integrator’s query to all registered Headhunters,

which fall in the domain of the System Integrator’s search request (one to many

interaction).

The Headhunters respond to the QM query with search results matching the criteria

(many to one interaction).

8 This indicates the interactions between adapter components and AM.

Adapter components register with the AM, which is running at a well-known

location (many to one interaction).

9 This shows the interactions between the clients and the AM.

Clients contact the AM at the well-known location at which it is running with

requests for specific adapter components (many to one interaction).

The AM checks against its repository for matches and returns the results to the

clients (one to many interaction).

10 This shows the interactions between QM and LM.

The QM propagates the query to the LM (one to one interaction).

LM returns search results to QM (one to one interaction).

11 This shows the interactions between the LM of one ICB and target LMs of other

ICBs with which this LM is registered.

The LM propagates the search query issued by the QM to all the target LMs (one to

many interaction).

The source LM receives the result responses from these target LMs (many to one

interaction).

Table 3.2. Interactions between URDS components

37

3.6 The UniFrame Approach (UA)

Figure 3.7 depicts the UniFrame Approach for the development of software solutions

for DCS. This approach as proposed in [RAJ01] has two levels:

• Component Level - in this level, different components are created by developers,

tested and verified from the point of view of QoS, and then deployed on the

network

• System Level -this level concentrates on assembling a collection of components,

each with a specific functionality and QoS, and semi-automatically generates the

software solution for the particular DCS under consideration.

Figure 3.7. UniFrame Approach

38

The two levels of the UA and associated processes as described in [RAJ01] are provided

below.

3.6.1 Component Development and Deployment Process

The component development and deployment process (illustrated in Figure 3.8)

starts with a UniFrame specification of a component from a particular domain (see Figure

3.2). This specification is in a natural language-like format and indicates the

computational, cooperative, and auxiliary aspects and QoS metrics of the component.

This informal specification is then refined into a XML-based specification (see Figure

3.3). The refinement is based upon the theory of Two-Level Grammar (TLG) natural

language specifications [BAR00, VAN65], and is achieved by the use of conventional

natural language processing techniques (e.g., see [JUR00]) and a domain knowledge

base. The refinement process also includes the generation of interfaces, which may then

be integrated into an implementation using glue and wrapper code. The interface

incorporates all the aspects of the component, as required by the UniFrame specification.

The developer provides the necessary implementation for the computational, behavioral,

and QoS methods. This process is followed by the QoS validation. If the results are

Figure 3.8. Component Development and Deployment Process

39

satisfactory (as required by the QoS criteria) then the component is deployed on the

network and eventually, it is discovered by one or more Headhunters. If the QoS

constraints are not met then either the developer refines the UniFrame specification or the

implementation and the cycle repeats.

3.6.2 Automated System Generation and Evaluation based on QoS

In general, different developers will provide on the Internet a variety of possibly

heterogeneous components oriented towards a specific problem domain. Once all the

components necessary for implementing a specified distributed system are available, then

the task is to assemble them into a solution. The proposed framework takes a pragmatic

approach, based on Generative Programming [CZA00], to component-based

programming. It is assumed that the generation environment will be built around a

generative domain specific model (GDM) supporting component-based assembly. The

distinctive features of the proposed approach are as follows:

The developer of the desired distributed system presents to this process a system

query, in a structured form of natural language that describes the required characteristics

of the distributed system. The natural language processor (NLP) processes the query. It

does this aided by the domain knowledge (such as key concepts from the domain) and a

knowledge-base containing the UniFrame description of the components for that domain.

From this query a set of search parameters is generated which guides Headhunter agents

for a component search in the distributed environment.

 The framework, with the help of the infrastructure described in Section 3.5,

collects a set of potential components for that domain, each of which meets the QoS

requirement specified by the developer. From these, the developer, or a program acting as

a proxy of the developer, selects some components. After the components are fetched, the

system is assembled according to the generation rules embedded in the generative domain

40

model. These components along with the appropriate adapters (if needed) form a

software implementation of the distributed system.

Next this implementation is tested using event traces and the set of test cases to

verify that it meets the desired QoS criteria. If it does not, it is discarded. After that,

another implementation is chosen from the component collection. This process is

repeated until an optimal (with respect to the QoS) implementation is found, or until the

collection is exhausted. In the latter case, the process may request additional components

or it may attempt to refine the query by adding more information about the desired

solution from the problem domain. Once a satisfactory implementation is found, it is

ready for deployment.

The process for automated system generation and evaluation is illustrated in

Figure 3.9.

Figure 3.9. Automated System Generation and Evaluation

This chapter provided an overview of the UniFrame Approach to developing a

software solution for a DCS. The next chapter elaborates on the URDS architecture by

providing a detailed high-level description of the URDS components.

41

4. URDS ARCHITECTURE

Chapter 3 provided an overview to the UniFrame Approach and the URDS

architecture. The present chapter describes the URDS architecture in detail, focusing on

the high-level design, the algorithms, and the interactions of the components that

comprise the URDS architecture. The descriptions in this chapter are at a conceptual level

and are not tied to the software that may implement the architecture. The implementation

specific details will be covered in Chapter 5.

 Figure 4.1 below illustrates the components of the URDS architecture outlined in

Chapter 3.

 Figure 4.1. Components of the URDS Architecture

42

The overview of the URDS architecture presented in Chapter 3 highlighted the

functions of its components namely: i) Internet Component Broker (ICB) which is a

collection of the following services - Query Manager (QM), the Domain Security

Manager (DSM), Link Manager (LM) and Adapter Manager (AM) ii) Headhunters

(HHs), iii) Meta-Repositories (MR), and iv) Active-Registries (AR). The URDS

architecture is designed to discover heterogeneous services (S1..Sn). The clients/users of

the URDS system are the Component Assemblers, System Developers or System

Integrators.

The following subsections provide the high-level design details and algorithms for

each of the components in the URDS architecture.

4.1 Internet Component Broker

The ICB acts as an all-pervasive component broker in the interconnected

environment providing a platform for the discovery and seamless integration of disparate

components. The ICB is not a single component but is a collection of services comprising

of the Query Manager (QM), the Domain Security Manager (DSM), Adapter Manager

(AM), and the Link Manager (LM). It is envisioned that there will be a fixed number of

ICBs deployed at well-known locations hosted by corporations or organizations

supporting the UniFrame initiative. The functionality of the ICB is similar to that of an

Object Request Broker. However, the ICB has certain key features that are unique. It

provides component mappings and component model adapters. The ICB, in conjunction

with Headhunters, provides the infrastructure necessary for scalable, reliable, and secure

discovery and registry services using the interconnected infrastructure.

43

The chief functionalities provided by the ICB are:

• Authenticate the principals (Headhunters and Active Registries) in the system and

enforce access control over the multicast address resources for a domain with the

help of the Domain Security Manager (DSM).

• Attempt at matchmaking between service producers and consumers with the help

of the Headhunters and Query Manager. ICBs may cooperate with each other in

order to increase the search space for matchmaking. The cooperation techniques

of ICBs are facilitated through the Link Manager (LM).

• Act as a mediator between two components adhering to different component

models. The mediation capabilities of the ICB are facilitated through the Adapter

Manager (AM).

4.1.1 Algorithm for ICB Initialization

In the algorithm the ICB initializes all the services i.e., the DSM, QM, LM and

AM by calling their initialization routines.

ICB_INITIALIZATION

CALL DSM_INITIALIZATION (see Algorithm 4.2.4.1)

CALL QM_INITIALIZATION (see Algorithm 4.3.3.1)

CALL LM_INITIALIZATION (see Algorithm 4.4.1.1)

CALL AM_INITIALIZATION (see Algorithm 4.5.1.1)

END_ICB_INITIALIZATION

The following subsections provide a description of the services that comprise the

ICB and their contribution to providing the functionality of the ICB.

44

4.2 Domain Security Manager (DSM)

The URDS discovery protocol is based on periodic multicast announcements.

Multicasting [ERI94] is a scalable solution for the group communication. However, there

are various security issues that have to be addressed in a multicast communication, which

do not arise in an unicast communication [BAL95]. Security threats that need to be

addressed are:

• Eavesdropping: Since multicast addresses are not private, any interested host can

gain access to the multicast data by just becoming a member of that group. These

kinds of security attacks, where adversaries try to gain access to the data without

really disrupting the secure multicast protocol, are called passive attacks

[STA95]. Potential adversaries may also use the data collected by means of

eavesdropping for cryptanalysis purposes or replay the data at a later time.

• Uncontrolled Group Access: Since access to the group is not controlled in

multicast communication, any host can send data to a multicast group which can

cause congestion and also possibilities of a Denial Of Service attack against the

group.

• Masquerading: An adversary may also pose as another host that is a member of

the group. This enables the adversary to send data, receive data and or acquire

access to the secret-keys by posing as a legitimate member of the group.

Masquerading is a form of active attack.

[DON99] has identified the following components; a) Group Membership Control,

b) Secure Communication, and c) Key Distribution as being critical to effectively

combating the security threats faced in multicast communication. The following

subsections provide a brief overview of these security mechanisms and explain how they

are incorporated in the URDS architecture with the help of the DSM.

45

4.2.1 Group Membership Control (GMC)

 The GMC allows only authorized hosts to join a multicast group, guarding

against otherwise unilateral subscriptions by arbitrary hosts. Group membership control

can be exercised in two ways:

• Access Control Lists: Access Control Lists allow a sender or an authorized third

party to maintain an inclusion or an exclusion list of hosts on the Internet

corresponding to a multicast group. Each time a host requests to join the multicast

group, the sender or the third party checks with the access control list to

determine whether the host is authorized to join the group. [ACC97] defines an

ACL as a “data structure that guards access to resources”. An ACL data structure

is comprised of multiple entries, each of which contains a set of permissions

associated with a particular principal. A principal represents an entity such as an

individual user or a group. Each entry can be specified as being either positive

(i.e., permissions are granted to the associated principal) or negative (i.e.,

permissions are denied). An ACL is independent of the authentication scheme

used to verify the validity of the principal, the encryption scheme used to transmit

the data across the network and the resource that it guards. The ACL is consulted

after the authentication phase. After the principal is verified to be an authenticated

user in the system, the principal may access resources. For each such resource, the

principal may or may not be granted an access depending on the permissions that

are granted to the principal in the ACL that guards the resource. The ACL can be

consulted to find the list of permissions a particular principal has or to find out

whether or not a principal is granted a particular permission [ACC97]. The details

of how the ACL is created is presented in the algorithm for creating ACL entries

in subsection 4.2.4.2.

• Use of Capability Certificates [DON99]: Capability Certificates are issued by a

designated third party to receivers. Capability Certificates authenticate the

receivers and authorize them to participate in a multicast group. The receivers

46

present the capability certificates to the sender or an authorized third party to gain

access to the group.

 The Group Membership Control in the URDS is enforced through the use of

userid/password authentication and Access Control Lists. The resources being guarded

are the multicast addresses allocated to a particular domain. The Domain Security

Manager (DSM) serves as an authorized third party, which maintains an inclusion list of

Principals (Headhunters or registries) corresponding to a domain. DSM has an associated

repository (database) of valid principals, passwords, multicast address resources and

domains. Every Headhunter or Active Registry is associated with a domain. The Active

Registries associated with a domain have components registered with them, which belong

to that domain. The Headhunter in turn detects Registries, which belong to the same

domain as itself, and hence, the service components detected by the Headhunter will

belong to a particular domain. The Principal (authenticated user), is allowed access only

to the multicast address mapped to the domain with which it is associated. A Principal

that wishes to participate in the discovery process contacts the DSM with its credentials

(id, password, domain). The DSM authenticates the principal and checks its

authorizations against the domain ACL. The DSM returns a secret-key and a multicast

address mapped to the corresponding domain to a valid principal. The DSM_Repository

is created and populated by an administrator. The mappings between multicast addresses

and domains, and users and domains are established by the organization providing the

DSM service.

4.2.2 Secure Communication

 A Secure communication can be ensured by the transmission of encrypted data.

There are several cryptographic mechanisms such as secret-key [STA95] and public-key

[STA95] mechanisms.

47

In the URDS, the security of transmitted data is ensured through the process of

Secret-Key Encryption. A secret-key is a symmetric key wherein the sender and receiver

use the same key for purposes of encryption and decryption. The DSM is responsible for

generating a unique secret-key for each domain.

4.2.3 Key Distribution

 A Key distribution scheme should ensure that the security key is not compromised

and the communication does not yield to active security attacks such as masquerading.

Many schemes exist for securing key distribution such as Centralized Flat Key

Management Scheme [BLU97, CAR98, GON94, HAR97], Hierarchical Key

Management Scheme [BAL96, CAR98, MIT97, WAL97], and Distributed Flat Key

Management Scheme [CAR98].

The URDS follows a Centralized Flat Key Management scheme wherein the

DSM serves as the central authority, which generates and distributes the secret-key to

authenticated principals. An overview of the DSM Security Enforcement Protocol is

provided below:

• DSM acts as an authorized third party centralized controller for the secret-key

distribution and the multicast address allocation to Headhunters and Registries.

• Secret-Key and Address allocation is domain specific.

• Headhunter/Registries communicate to DSM their authentication credentials (id,

password, domain).

• DSM verifies authentication credentials and checks permissions against the ACL

to verify the user access to that domain.

• DSM returns to the authorized users a multicast address picked at random from

the list of addresses allocated to that domain and a secret-key generated for that

domain.

48

• In case the principal is a Headhunter the DSM registers the contact information of

the Headhunter with itself. The QM uses this information for the query

propagation.

4.2.4 Algorithms for DSM Functions

Data structures used:

Hash table1

userDomainTable

Mapping between principal names and their

corresponding domains. The principal name serves as the

key for this mapping.

Hash table domainTable Mapping between multicast addresses and corresponding

domain names. The multicast address serves as the key for

this mapping.

Hash table

HHAddressAllocTable

Mapping between multicast addresses allocated to

Headhunters and their corresponding domains. The

multicast address serves as the key.

Hash table

registeredHHTable

Mapping between registered Headhunter locations and their

domain. The registered Headhunters are the authorized

principals who have received a multicast address and

secret-key from the DSM.

Hash table keyTable Mapping between domains and corresponding Secret-Keys.

The domain names serve as the key.

ACL2 domainACL ACL of usernames and their associated permissions (i.e.

domains).

Table 4.1. Data Structure for DSM functions

49

1 The algorithms in this section and succeeding sections use the hash table ADT to

represent key-value pair mappings. These hash tables are maintained as memory resident

tables.
2 The ACL is maintained in memory after creation.

4.2.4.1 Algorithm for DSM Initialization

The DSM configuration process comprises of setting up the DSM_Repository

with the information about the domains, associated multicast addresses, authorized users

and their passwords. The information is stored in the DSM_Repository as a collection of

tables (refer sub section 5.3.4.1.1.3 in Chapter 5 for implementation specific details on

these tables). The DSM configuration is performed by an administrator. The DSM upon

initialization creates an ACL of usernames and their associated permissions and generates

secret-keys for each of the domains. It then actives the authentication service, which can

respond to remote calls by the Headhunters and active registries. New entries to the

DSM_Repository are added on an as-needed basis and the in-memory ACL is updated

accordingly.

DSM_INITIALIZATION

CREATE DSM_REPOSITORY

CALL DSM_CREATE_ACL_ENTRIES

CALL DSM_GENERATE_SECRET_KEYS

ACTIVATE DSM_AUTHENTICATION_SERVICE

END_DSM_INITIALIZATION

4.2.4.2 Algorithm for Creating Entries in the ACL

This algorithm outlines the process for creating principals and permissions using

usernames and domain names. It also describes the process for creating ACL entries

using these principal-permission pairs and adding these entries to the ACL.

50

DSM_CREATE_ACL_ENTRIES

LOAD userDomainTable from DSM_Repository

userNameList = GET enumeration of user names from userdomainTable

WHILE userNameList HAS MORE ELEMENTS

username = GET NEXT ELEMENT from userNameList

domainName = GET value in userdomainTable for username key.

Create a new PRINCIPAL with the username

Create a new ACLENTRY with the new PRINCIPAL

Create a new PERMISSION with the domainName

Add PERMISSION to ACLENTRY

Add ACLENTRY to domainACL

ENDWHILE

END_DSM_CREATE_ACL_ENTRIES

4.2.4.3 Algorithm for Generating Secret-Keys

This algorithm outlines the process for generating secret-keys using any standard

secret-key-generating algorithm such as DES, Triple DES, Blowfish, etc. A secret-key is

generated for each domain and stored in a hash table ADT of domain names and secret-

key pairs.

DSM_GENERATE_SECRET_KEYS

domains = GET enumeration of domain names from domainTable

//Create a key generator component capable of generating secret-keys that

// corresponds to a given key generating algorithm.

keyGenerator =

CREATE a new KEYGENERATOR with keyGeneratingAlgorithm

//Generate a secret-key for each domain.

51

WHILE domains HAS MORE ELEMENTS

domainName = GET NEXT ELEMENT from domains

secretKey = GENERATEKEY with keyGenerator

PUT < domainName, secretKey > in keyTable

ENDWHILE

END_DSM_GENERATE_SECRET_KEYS

4.2.4.4 Algorithm for Authentication, and Secret-Key and Multicast Address Distribution

This algorithm outlines the process for authenticating a principal by verifying their

authentication credentials against the DSM_Repository. The authorization of user

permissions is done by checking against the ACL. A multicast address is picked at

random from the list of multicast addresses allocated to that domain. An authenticated

packet comprising of the multicast address and secret-key for the domain is returned to

the user.

DSM_AUTHENTICATION_SERVICE

IN: userType, userName, password, contactLocation, domain

OUT: authenticatedPacket containing multicastAddress and secretKey

WHILE TRUE

IF contacted by user

isUserAuthenticated =

VALIDATE userType, userName, password against

DSM_Repository.

IF isUserAuthenticated EQUALS TRUE

CREATE a new PRINCIPAL for the username

CREATE a new PERMISSION for the domain

isUserAuthorized = CHECK PRINCIPAL’s PERMISSION

 in domainACL

52

IF isUserAuthorized EQUALS TRUE

/* If a multicast address for a domain is requested

by a Registry and there are addresses allocated to

Headhunters for this domain then get the list of

domainAddresses from HHAddressAllocTable

corresponding to domainName and select an address

at random from this list. */

IF (userType EQUALS “Registry”) AND

(HHAddressAllocTable CONTAINS VALUE

domainName)

mcastaddressList =

GET the list of domainAddresses from

 HHAddressAllocTable corresponding to

 domainName.

domainAddress =

SELECT RANDOM address from

 mcastaddressList

 ELSE

/* If a HeadHunter/Registry requests

multicast address for a domain pick an

address at random from the domainTable–

i.e. from the list of addresses allocated to

this domain. */

mcastaddressList =

GET list of domainAddresses from

domainTable corresponding to

domainName.

domainAddress =

SELECT RANDOM address from

 mcastaddressList

53

IF (userType EQUALS “Headhunter”)

/* Maintain a list of Headhunter contact

locations */

PUT<contactLocation, domainName> in

registeredHHTable

 /* Maintain a list of addresses-domain

mappings allocated to Headhunters. */

 PUT <domainAddress, domainName> in

 HHAddressAllocTable

 ENDIF

 ENDIF

 secretKey =

 GET secretkey from keyTable corresponding to

 domainName

CREATE authenticatedPacket and Send

Response to user

 ENDIF //authorized user

 ENDIF //authenticated user

 ENDIF //contacted by user

 ENDWHILE

END_DSM_AUTHENTICATION_SERVICE

4.2.4.5 Algorithm for Withdrawing Headhunters from DSM

This algorithm outlines the process for withdrawing a Headhunter from the DSM.

DSM_WITHDRAW

IN: HeadhunterLocation

REMOVE key-value pair corresponding to HeadhunterLocation from

54

RegisteredHHTable

END_DSM_WITHDRAW

4.3 Query Manager (QM)

The QM is responsible for finding services matching the client’s query requests.

The QM uses a parser [LEE02] to translate a service consumer’s natural language-like

query into an XML-based query. The QM parses the XML based query to generate a

structured query language statement and dispatches this query to the ‘appropriate’

Headhunters (determined by the domain of the query). Requests for service components

belonging to a specific domain will be dispatched to Headhunters belonging to that

domain and the Headhunters return the list of matching service providers to the QM. The

QM obtains the list of registered Headhunters from the DSM. The QM in conjunction

with the LM is also responsible for propagating the queries to other linked ICBs.

The QM is configured by an administrator with a Query Propagation Policy. The

QM propagates a query to the LM based on the Query Propagation Policy specified. The

Query Propagation Policy can be specified as:

• If No Local: Propagate a query to the LM only if there are no local search results

that satisfy the query

• Always: Always propagate a query to the LM

4.3.1 Result Selection Process

The total search space for a service selection may be very large; including

services from all Headhunters associated with a particular Internet Component Broker

(ICB) and all linked ICBs. The QM uses policies (explained in subsection 4.3.1.1) to

55

identify a set S1 of services to return. The QoS type and constraint (explained in

subsection 4.3.1.2) are applied to S1 to produce the set S2 that satisfies the service type

and constraint. Then this can be is ordered using the preferences specified in the query

(explained in subsection 4.3.1.3), before returning the services to the service requesters.

4.3.1.1 Policies

Policies provide information to affect QM behavior at run time. Policies are

represented as name-value pairs. Policies can be grouped into two categories: a) policies

that scope the extent of a search, and b) policies that determine the functionality applied

to an operation. The examples for search scoping policies are i) upper bound of offers to

be searched, ii) upper bound of offers to be returned, and iii) upper bound of matched

offers to be ordered, etc. Examples for functionality scoping policies are minimum

number of QoS types desired to be matched.

4.3.1.2 Constraints

Service Requesters use QoS types and constraints to select the set of service

offers in which they have an interest. Constraints are described by the 3-tuple

 <QoS-type-name, Operators, Literals> where QoS-type-name specifies the QoS metric

on which the constraint is being applied, Operators are comparison, boolean connective,

substring, arithmetic operators, etc., and Literals are the numeric/string/boolean values

corresponding to the QoS types. Example: <availability, >, 50>

4.3.1.3 Preferences

Preferences are applied to the set of services matched by application of the QoS

type, constraint expression, and various policies. The application of the preferences can

determine the order used to return matched services to the service requesters. Preferences

56

are associated with the 2-tuple <Sort Order, QOS-type-name >. The sort order can be

specified as max (matched offers are returned in descending order of QoS-type values),

min (matched offers are returned in ascending order of QoS-type values), and first

(matched offers are returned in the order they are discovered).

4.3.2 Query Handling Process

The QM Query Request Handling Protocol consists of the following steps:

• Parse a component assembler’s/system integrator’s natural language-like query

and extract the keywords and phrases pertaining to various attributes of the

components UniFrame specification.

• Extract the consumer-specified constraints, preferences and policies to be applied

to the various attributes.

• Compose the extracted information into an XML-based query.

• Translate the XML-based query to a structured query language statement.

• Dispatch this structured query to all the Headhunters associated with the domain

on which the search is being performed and also forward the query based on the

Query Propagation Policy to the Link Manager, which will propagate the query

to other ICBs.

• The Headhunters will query associated Meta-Repositories and return a list

(possibly non-empty) of components matching the search criteria to the QM,

which is returned to the system integrator making the query.

• QM will wait for a specified time period for results to be returned from the

Headhunters/other ICBs before timing out. A default timeout period for a session

is configured into the QM by an administrator. A session constitutes each new

query operation serviced.

• The system integrator has the option to specify search-scoping policies to affect

the time spent on the search process.

57

4.3.3 Algorithms for QM Functions

Data structures used:

Entity3 queryEntity An entity, which holds all the attributes

corresponding to the client’s query request with

accessors for accessing the attributes. The

attributes of the queryEntity include the

computational, cooperational, and auxiliary

attributes, QoS Metrics, QM Policies,

Constraints, and Preferences.

Hash table resultTable Mapping between Component IDs and

components holding the detailed UniFrame

Specification.

Table 4.2. Data Structure for QM functions

3 An Entity data structure is a conceptual representation for an object and holds all the

attributes that describe the object with accessors for accessing these attributes.

4.3.3.1 Algorithm for QM Initialization

 The QM initialization activates the client request handler. This process receives

requests from clients and responds with results. It also activates the query propagation

service, which can be called by QM or LM.

QM_INITIALIZATION

 ACTIVATE QM_CLIENT_REQUEST_HANDLER

 ACTIVATE QM_PROPAGATE_QUERY

END_QM_INITIALIZATION

58

4.3.3.2 Algorithm for Handling Query Requests from Clients

 This algorithm outlines the process for servicing requests from Clients. Clients

contact the QM with a natural language-like query. This is processed into an XML query,

which is parsed to construct an entity that embodies all the attributes of the query. The

queryEntity is propagated to Headhunters, which are associated with the domain of the

query and also to the LM based on the results obtained from the Headhunters and the

QueryPropagationPolicy set on the QM. The final results returned from the Headhunters

and LMs are ordered as per the client’s preferences and returned to the client. Each client

request is handled as a separate session. The session timeout period is configured in the

QM.

QM_CLIENT_REQUEST_HANDLER

 IN: naturalLanguageQuery

 OUT: resultTable

//Get handle to DSM and LM by contacting them at the well-known locations.

dsm = LOOKUP dsmLocation

 lm = LOOKUP lmLocation

 WHILE TRUE

 IF contacted by client with naturalLanguageQuery Request

/* The natural language query is parsed and keywords, constraints,

preferences, and policies extracted and domain knowledge base is

applied to the extracted information and written to a XML File */

 Parse naturalLanguageQuery and generate XML File.

/* The XML query is parsed and the values populated into an

entity which contains the logic to construct the structured query

language statement. */

 xmlQueryDocument =

Parse XML file and load XML document into memory.

/* The QM_PROCESS_XML_QUERY function populates

59

 the queryEntity instantiated here. */

 CREATE a new queryEntity

 CALL QM_PROCESS_XML_QUERY with xmlQueryDocument

 //Propagate the query to all Headhunters in the domain of query

resultTable =

CALL QM_PROPAGATE_QUERY with queryEntity

/* Check if the search scoping policies have been met

example if upper bound of offers to be returned

has been met and if so return results to client. */

searchScopePolicy = GET search scoping policy from queryEntity

IF (searchScopePolicy is specified) AND

 (searchScopePolicy is satisfied)

 resultTable = CALL QM_ORDER_RESULTS

with queryEntity, resultTable

 Send response to client with resultTable

ENDIF

 /* If further propagation of query is required

Check the Query Propogation Policy on the QM.

 If QueryPropogationPolicy = “IfNoLocal” and

 there are no results matching the search criteria

then propagate query.

If the QueryPropogationPolicy = “Always”

 then propagate query irrespective of whether there are local

 search results. */

IF ((resultTable NOT NULL)) OR

 ((QueryPropogationPolicy EQUALS“Always”))

 results = CALL LM_PROPAGATE_QUERY on lm

 with queryEntity

 ADD results to resultTable

 ENDIF

60

 //Order the results as per client preferences

resultTable =

CALL QM_ORDER_RESULTS with queryEntity, resultTable

 Send response to client with resultTable

 ENDIF

 ENDWHILE

END_QM_CLIENT_REQUEST_HANDLER

4.3.3.3 Algorithm for Processing XML Query

This algorithm uses recursion to parse through the nodes of the XML tree, extract

the node values and store these values in the queryEntity. The algorithm starts parsing at

the root node element. It extracts the node name and checks if the node name matches

any attribute in queryEntity and populates it with the value in this node. It then finds all

the children of that node and repeats the process through recursion.

QM_PROCESS_XML_QUERY

 IN: nodeElement

 nodeName = GET NODE NAME from nodeElement

 FOR each attribute in queryEntity

 IF nodeName EQUALS attribute

nodeValue = GET NODE VALUE from nodeElement

 SET attribute value in queryEntity to nodeValue

 ENDIF

 ENDFOR

// Get the list of children for this Node.

NODELIST childrenList = GET CHILDNODES for nodeElement

IF childrenList NOT NULL

 // For every child node in the list

61

 FOR i = 0 to LENGTH of childrenList

 childNode = childrenList[i]

/* Recurse through the function PROCESS_XML_QUERY

passing it the childNode as reference.*/

 CALL QM_PROCESS_XML_QUERY with childNode

 ENDFOR

 ENDIF

END_QM_PROCESS_XML_QUERY

4.3.3.4 Algorithm for Propagating Query to Headhunters

This algorithm outlines the process for popagating a query request to the

Headhunters. The domain of a client’s query and the search scoping policies are retrieved

from the queryEntity. The DSM is contacted to obtain a list of registered Headhunter

locations matching this domain. The query is then propagated to each Headhunter and

the search scoping policies are checked after each propagation to verify whether the

policies have been satisfied. If the policies are satisfied then further propagation is

terminated and the results are ordered as per client preferences and returned.

QM_PROPAGATE_QUERY

 IN: queryEntity

 OUT: resultTable

 WHILE TRUE

 IF contacted by this QM or LM

 //The queryEntity stores the details of the query such as the domain

 // and other attributes of the query.

 domain = GET domainName of query from queryEntity

/* Get location list of registered Headhunters for the domain of the

query. */

62

hhLocationList = GET Headhunter locations list from dsm with

 domain

//Propagate the query to each registered Headhunter in the domain.

FOR i=0 to LENGTH of hhLocationList

 //Get the location of the Headhunter

hhlocation = hhLocationList[i]

//Get a handle to the Headhunter

Headhunter = LOOKUP hhlocation

//Propagate query to each Headhunter.

results = CALL HH_EXECUTE_QUERY

 on Headhunter with queryEntity

ADD results to resultTable

 ENDFOR

 RETURN resultTable

 ENDIF

 ENDWHILE

END_QM_PROPAGATE_QUERY

4.3.3.5 Algorithm for Ordering Search Results

This algorithm outlines the process for retrieving client preferences (sort order

ascending or descending) and the QoS type on which the ordering is to be performed. The

results are then ordered accordingly and returned.

QM_ORDER_RESULTS

 IN: queryEntity, resultTable

 OUT: resultTable

orderPreference = GET ordering preference from queryEntity

qosTypeToOrder = GET the QoS-Type-Name to order by from queryEntity

63

IF orderPreference NOT NULL // If an order preference was specified

 resultTable= SORT elements of resultTable on qosTypeToOrder

 RETURN resultTable

ELSE

RETURN resultTable to client

ENDIF

END_QM_ORDER_RESULTS

4.3.3.6 Algorithm for Generating Structured Query Language (SQL) Statement

This algorithm forms a part of the operations performed by queryEntity. This

algorithm outlines the process for generating a SQL statement based on the attributes

extracted from the client’s query. These attributes are captured in the queryEntity. The

attribute names, values and constraints stored in the query entity are built into a SQL

statement.

QE_GENERATE_SQL_QUERY

 IN: queryEntity

 OUT: sqlQuery

 attributeList = GET all attributes in queryEntity

 FOR i=0 to LENGTH of attributeList

 attribute = attributeList[i]

 IF attribute is selected as search parameter

 attributeValue = GET value of this attribute from queryEntity

 attributeConstraint = GET constraint value from queryEntity

 CONCATENATE to BUILD SQL query the

attribute, attributeConstraint, and attributeValue

 ENDIF

64

 ENDFOR

 RETURN sqlQuery

END_QE_GENERATE_SQL_QUERY

4.4 Link Manager (LM)

ICBs are linked to form a Federation of Brokers (refer Figure 3.5 in Chapter 3) in

order to allow for an effective utilization of the distributed offer space. ICBs may

propagate the search query issued by the system integrator to other ICBs to which they

are linked. This linkage of ICBs makes the offer spaces of the linked ICBs implicitly

available to the ICB’s own clients.

The LM performs the functions of the ICB associated with establishing links and

propagating the queries. Links represent paths for propagation of queries from a source

ICB to a target ICB. Each link is unidirectional and corresponds to an edge in a directed

graph, in which the vertices are LMs.

The Link Manager supports the following operations:

• Query: The query operation is responsible for propagating the query from the

source LM to the list of Target LMs maintained with the Source LM.

• Failure Detection: This involves keeping track of LMs, which may no longer be

active due to network failure, node failure, etc. Periodically (TPunicast ms – time

period between successive failure detection cycles) the source LM contacts the

list of target LMs with which it is configured, to re-establish links and to create a

fresh target LM list. If the target LMs respond to the source LM, it means the

Target LM is ‘alive’ to service requests. This target LM location is added to the

65

list of target LMs to whom requests will be propagated in that cycle. If the target

LMs do not respond then that target LM may have failed. During subsequent

cycles if a previously failed target LM is now alive to service requests, then it is

added to the list of LMs to receive queries for that cycle.

4.4.1 Algorithms for LM Functions

Data structures used:

List aliveTargetLMList List of Target LM locations, which are

alive and can service query requests.

List targetLMList List of locations of LM’s with which this

LM registers. This can be specified with

the configuration information at LM

initialization.

Table 4.3. Data Structure for LM functions

4.4.1.1 Algorithm for LM Initialization

The LM upon initialization establishes links with the list of target LMs passed to

it as configuration information. It starts failure detection processes, which stay alive as an

active processes and runs periodically in the background. It also activates the query

propagation and link checking processes, which can be called from remote LMs.

LM_INITIALIZATION

 IN: targetLMList

 CALL LM_ESTABLISH_LINKS

 START LM_FAILURE_DETECTION

66

 ACTIVATE LM_PROPAGATE_QUERY

ACTIVATE LM_CHECK_LINK

END_LM_INITIALIZATION

4.4.1.2 Algorithm for Establishing Links with Target LMs

This algorithm outlines the process followed by the LM for establishing links with

Target LMs. The LM steps through the list of target LM locations it is configured with

and contacts each of these target LMs. If the target LM responds, then this target LM

location is added to the aliveTargetLMList, which maintains a list of all alive target LMs

to whom the queries will be propagated. If the LM does not repond due to link or node

failure then the failed target LM address is not stored.

LM_ESTABLISH_LINKS

CREATE aliveTargetLMList

 //Contact the LMs specified in configuration.

 FOR i=0 to LENGTH targetLMList

 targetLMLocation = targetLMList[i]

 targetLM = LOOKUP targetLMLocation

 isAlive = CALL LM_CHECK_LINK on targetLM

//If target LM is alive then add this target LM location

//to the list.

IF isAlive

//Maintain a list of LMs with whom registration was

// successful

ADD targetLMLocation to aliveTargetLMList

 ENDIF

 ENDFOR

END_LM_ESTABLISH_LINKS

67

4.4.1.3 Algorithm for Checking whether Links can be Established

The LM contacts target LMs to check if they are functioning. When contacted by

a source LM the target LM returns a “true” response indicating it is alive to service

requests.

LM_CHECK_LINK

 OUT: isAlive

 WHILE TRUE

 IF contacted by LM

 RETURN TRUE

 ENDIF

 ENDIF

END_LM_CHECK_LINK

4.4.1.4 Algorithm for Propagating a Query by the LM

This algorithm outlines the process for receiving a query from the QM in the same

ICB and propagating it to LMs in other ICBs or receiving a query from LMs in other

ICBs and propagating query to the QM in the same ICB. The determination of where the

query is coming from is made based on the value of the requestID attribute in

queryEntity. The requestID is a String value, which is set to the value “LinkManager” if

the query is received from an external LM or holds a default value of “QueryManager”

when the queryEntity is instantiated by the QM for propagation. When the LM receives a

query it inspects the value of the requestID attribute. If the requestID is set to

“QueryManager” it means the query has originated from a QM in the same ICB and

68

needs to be propagated to other LMs. If the requestID set to “LinkManager”, it means the

query is coming from another LM and needs to be propagated to the QM in the same ICB

as the LM.

LM_PROPAGATE_QUERY

 IN: queryEntity

 OUT: resultTable

 WHILE TRUE

 IF contacted by QM in same ICB or LM in different ICB

 requestID = GET requestID from queryEntity

 //If the propagation request has come from LM in the different ICB

IF (requestID EQUALS “LinkManager”)

 //Propagate the request to QM located in same ICB as LM.

resultTable = CALL QM_PROPAGATE_QUERY on qm

 with queryEntity

RETURN resultTable

 //If the propagation request has come from QM in the same

 //ICB as LM. The requestID would be set to “QueryManager”.

 ELSE

 //This query will now be propagated to target LMs

 //hence the requestID parameter has to reflect this

 //that it is coming from a LM.

 SET requestID = “LinkManager” in queryEntity

 CREATE resultTable

//Get list of all alive LMs to whom the query can be

//propagated.

FOR i = 0 to LENGTH of aliveTargetLMList

 targetLMLocation = aliveTargetLMList[i]

 targetLM = LOOKUP targetLMLocation

 results =

69

CALL LM_PROPAGATE_QUERY on targetLM

with queryEntity

 ADD results to resultTable

 ENDFOR

 RETURN resultTable

 ENDIF

 ENDIF

 ENDWHILE

END_LM_PROPAGATE_QUERY

4.4.1.4 Algorithm for Failure Detection of Target LMs

The LMs periodically check whether all the target LMs maintained in the target

LM list are still alive by establishing contact with the target LMs.

LM_FAILURE_DETECTION

 WHILE TRUE

 CALL LM_ESTABLISH_LINKS

// Periodically (TPunicast millisecs) refresh links so that

//a list of ‘alive’ Target LMs is maintained. The optimal

// TPunicast time is determined based on experimentation.

 SLEEP TPunicast

 ENDWHILE

END_LM_FAILURE_DETECTION

70

4.5 Adapter Manager (AM)

The AM serves as a registry/lookup service for clients seeking adapter

components. The adapter components register with the AM and while doing so they

indicate their specialization (i.e., which heterogeneous component models they can

bridge efficiently). System Integrators contact the AM to search for adapter components

matching their needs. The AM utilizes adapter technology, each adapter component

providing translation capabilities for specific component architectures. Thus, a

computational aspect of the adapter component indicates the models for which it provides

interoperability. The adapter components achieve interoperability using the principles of

wrap and glue technology [LUQ01]. A reliable, and cost-effective development of wrap

and glue is realized by the automatic generation of glue and wrappers based on

component specifications. Wrapper software provides a common message-passing

interface for components that frees developers from the error prone tasks of

implementing interface and data conversion for individual components. The glue

software schedules time-constrained actions and carries out the actual communication

between components.

4.5.1 Algorithms for AM Functions

Data structures used:

Entity adapterQueryEntity An entity, which holds all the attributes

corresponding to the client’s query request with

access modifiers for accessing the attributes.

List adapterResults List of adapter components matching the query

requirements.

Table 4.4. Data Structure for AM functions

71

4.5.1.1 Algorithm for AM Initialization

The AM on initialization creates the AM_REPOSITORY where the adapter

component service information is stored. It activates the client request handler, which

services client’s query requests for adapter components and the adapter registration

handler process, which receives calls from remote services to register them with the AM.

AM_INITIALIZATION

 CREATE AM_REPOSITORY

ACTIVATE AM_CLIENT_REQUEST_HANDLER

ACTIVATE AM_SERVICE_REGISTRATION_HANDLER

END_AM_INITIALIZATION

4.5.1.2 Algorithm for Handling Client Requests for Adapters

The AM receives natural language-like query requests for adapter components

from clients. The process of parsing the query and generating a structured query language

statement is similar to that used in the QM (Algorithm QM_PROCESS_XML_QUERY

and QE_GENERATE_SQL_QUERY). The AM executes the resultant SQL query against

the AM Repository and obtains the list of adapter components matching the search

criteria.

AM_CLIENT_REQUEST_HANDLER

 IN: naturalLanguageAdapterQuery

 OUT: adapterResults

 WHILE TRUE

 IF contacted by client with REQUEST for adapter components

 // Refer algorithms QM_PROCESS_XML_QUERY and

72

// QE_GENERATE_SQL_QUERY

 sqlQuery = PROCESS naturalLanguageAdapterQuery

 adapterResults = EXECUTE QUERY sqlQuery on

 AM_REPOSITORY

 return adapterResults to Client

 ENDIF

 ENDWHILE

END_AM_CLIENT_REQUEST_HANDLER

4.5.1.3 Algorithm for Registering Adapter Components

The AM receives the XML based specification of the adapter components and

parses these specifications to extract the data and stores this information in the

AM_REPOSITORY.

AM_ADAPTER_REGISTRATION_HANDLER

 IN: adapterComponentSpecification

 WHILE TRUE

 IF contacted by adapter component with REQUEST for registration

 STORE adapterComponentSpecification in AM_REPOSITORY

 ENDIF

 ENDWHILE

END_AM_ADAPTER_REGISTRATION_HANDLER

73

4.6 Headhunters

Another critical component of URDS is a Headhunter. The Headhunters perform

the following tasks: a) Service Discovery: detect the presence of service providers

(Exporters), b) register the functionality of these service providers, and c) return a list of

service providers to the ICB that matches the requirements of the consumer (Importers)

requests forwarded by the QM.

 The service discovery process performs the search based on multicasting.

Once deployed in the UniFrame environment, the Headhunters periodically (TPmcast ms -

time period between successive multicast cycles) multicast their presence (location

address of the Headhunter) to a multicast group. The multicast group address is obtained

from the DSM. The active registries (extended native registries), which also obtain a

multicast group address from the DSM, listen for multicast messages from Headhunters

on these multicast groups. When Active Registries receive a multicast message from a

Headhunter with its location they respond to the message by unicasting their location

information to the Headhunter. The Headhunters maintain a cache of the pairs <registry

address, Tr (time-stamp of receipt)>. The Headhunter uses the registry location

information received to query the Registries for the component information of service

providers they contain in order to register the service information details with itself.

During the registration, the Headhunter stores into the meta-repository all the details of

the service providers, including the UniFrame specifications. It uses this information

during a matching-making process where it tries to find services that satisfy the

computational, cooperational, auxillary attributes and QoS metrics specified in the search

query. A component may be registered with multiple Headhunters. The functionality of

Headhunters makes it necessary for them to communicate with Active Registries

belonging to any model, implying that the cooperative aspect of Headhunters be

universal.

74

The two main issues that need to be handled by the Headhunter apart from the

stated functions are:

• Failure Detection: Failure detection (FD) involves keeping track of service

exporter components which may no longer be active in the system for various

reasons including voluntary withdrawal from their respective registries, network

failure, node failure, etc. The failure detection in the Headhunter is done at the

level of detecting failure of the active registries, which hold the service exporter

components. The Headhunter keeps track of the time at which it obtains registry

location information from various active registries. At regular time intervals

(TPpurge ms – time period between successive purge cycles) the Headhunter notes

the ‘freshness’ of the information it holds and purges the registry information,

which it deems to be ‘stale’. ‘Fresh’ or ‘Stale’ are determined based on the time

elapsed between the receipt of the registry address through unicast

communication (Tr) and the current time (Tc). If the elapsed time is greater than 2

purge cycles (i.e. (Tc - Tr)> 2TPpurge) then it signifies that the registry is not

responding and may be dead or ‘stale’, else the registry information is deemed to

be ‘fresh’. This is essentially based on the principle that if a registry is still active

in the system it will respond to the Headhunter with its location information and

thus have a later timestamp. A registry which for whatever reason is unable to

contact the Headhunter with its information will hold a ‘stale’ timestamp and it

will be assumed that all service exporter components held by this registry are no

longer available for rendering service.

• Multicast Security: This involves securing the multicast data transmission

mechanism from security threats such as eavesdropping, and masquerading. The

Headhunter uses Secret-Key Encryption to ensure security of transmitted data.

The secret-key used is a symmetric key wherein the sender and receiver use the

same key for purposes of encryption and decryption.

75

4.6.1 Algorithms for HH Functions

Data structures used:

Hash table registryTable Mapping between Active Registry location

addresses and the timestamp of when this

location address information was received

by the Headhunter.

Hash table componentTable Mapping between Component IDs and

components holding the detailed UniFrame

Specification.

Table 4.5. Data Structure for HH functions.

4.6.1.1 Algorithm for HH Initialization

The Headhunter is configured at startup by the deployer with the DSM location

information, domain name, username, and password. The Headhunter upon initialization

contacts the DSM with its authentication credentials in order to obtain a multicast address

and secret-key for its domain. The Headhunter then creates the meta-repository, joins the

multicast group and starts the processes for sending multicast communication and failure

detection, which execute periodically. It also activates the process to receive unicast

communication, which receives calls from remote registries.

HH_INITIALIZATION

 IN: DSMLocation

 // Obtain handle to DSM which runs at well-known location

 dsm = LOOKUP DSMLocation

/* Obtain an authenticated packet by contacting the DSM. Pass the authentication

information (userType, userName, password, contactLocation, domain) to the

DSM and wait for response */

76

authenticatedPacket =

CALL DSM_AUTHENTICATION_SERVICE on dsm with

 userType, userName, password, contactLocation, domain

//Extract multicast address and secret-key from authenticatedPacket.

multicastAddress = GET multicastAddress from authenticatedPacket

secretKey = GET secretKey from authenticatedPacket

 CREATE META_REPOSITORY

// Once multicast address is obtained join the multicast group.

JOIN multicast group with multicastAddress

START HH_SEND_MULTICAST_COMMUNICATION

START HH_FAILURE_DETECTION

ACTIVATE HH_RECEIVE_UNICAST_COMMUNICATION

END_HH_INITIALIZATION

4.6.1.2 Algorithm for Headhunter Multicast Announcements

This algorithm outlines the process for periodic encrypted multicast announcements by

the Headhunter.

HH_SEND_MULTICAST_COMMUNICATION

WHILE TRUE

/* Keep multicasting the encrypted contact information of this Headhunter

at regular intervals to the multicast group address, which has

subscriptions from listeners, which are the active registries. */

encryptedHeadhunterLocation = ENCRYPT secretKey{HeadhunterLocation}

MULTICAST encryptedHeadhunterLocation

// Put the multicasting thread to sleep for TPmcast millisecs before the next

// multicast.

SLEEP TPmcast

77

ENDWHILE

END_HH_SEND_MULTICAST_COMMUNICATION

4.6.1.3 Algorithm for Receiving Unicast Communication from Active Registries

In this algorithm, the Headhunter receives the registry location from active registries. It

then computes the timestamp of receipt and stores the registry location and timestamp in

a hash table. It then uses the registry location information it has received to contact the

registry and retrieve component information available with the registry to store in the

meta-repository.

HH_RECEIVE_UNICAST_COMMUNICATION

 IN: registryLocation

 WHILE TRUE

 IF contacted by registry with registryLocation

/* Compute the timestamp when information was obtained

 The timestamp is computed as the number of millisecs elapsed

since January 1st, 1970 GMT. */

Tr = COMPUTE CURRENT_TIMESTAMP

/* Add the registry location information and timestamp to the

registry table.*/

PUT <registryLocation, Tr >in registryTable

CALL HH_POPULATE_META_REPOSITORY with

registryLocation

 ENDIF

ENDWHILE

END_HH_RECEIVE_UNICAST_COMMUNICATION

78

4.6.1.4 Algorithm for Populating Meta Repository

This algorithm demonstrates how the Headhunter gets a handle to the active registries

using their registry location and contacts the registries to retrieve the component

information, which it stores onto the meta-repository.

HH_POPULATE_META_REPOSITORY

 IN: registryLocation

 // Get handle to active registry using its registryLocation

 activeRegistry = LOOKUP registryLocation

 // Obtain the component data stored in this registry.

 componentTable = CALL AR_GET_COMPONENT_DATA on activeRegistry

 // Store the component information from the componentTable into the Meta-

 // Repository

 WHILE componentTable HAS MORE ELEMENTS.

componentInfo = GET NEXT ELEMENT from componentTable

STORE componentInfo to META_REPOSITORY

 ENDWHILE
END_HH_POPULATE_META_REPOSITORY

4.6.1.5 Algorithm to Retrieve Search Results from the Meta-Repository

This algorithm outlines the process in which the Headhunter generates the SQL

query from the queryEntity and executes this query against the meta-repository to retrieve

the list of components matching the search criteria.

79

HH_EXECUTE_QUERY

 IN: queryEntity

 OUT: resultTable

sqlQuery = CALL QE_GENERATE_SQL_QUERY on queryEntity

resultTable = EXECUTE QUERY sqlQuery on META_REPOSITORY

RETURN resultTable

END_HH_EXECUTE_QUERY

4.6.1.6 Algorithm to Detect Failure of Active Registries

This failure detection algorithm of the Headhunter involves keeping track of

active registries which may no longer be alive. The Headhunter records the timestamp of

responses received from these registries and periodically checks the freshness of the

registry timestamps purging a reference to all the ‘stale’ registries and also deleting all

the component information obtained from them.

HH_FAILURE_DETECTION

 WHILE TRUE

/* The Headhunter maintains time stamped entries of responses

 received from the active registries. Periodically (TPpurge millisecs) a

check is performed to verify the ‘currentness’ of members */

 SLEEP TPpurge

 Tc = COMPUTE CURRENT_TIMESTAMP

 registryList =GET enumeration of locations from registryTable

 WHILE registryList HAS MORE ELEMENTS.

registryLocation = GET NEXT ELEMENT from registryList

Tr = GET timestamp in registryTable for registryLocation

 IF (Tc - Tr)> 2TPpurge

80

DELETE components in repository obtained from this

registryLocation

REMOVE <registryLocation, Tr > from registryTable

 ENDIF

 ENDWHILE

 ENDWHILE

END_HH_FAILURE_DETECTION

4.6.1.7 Algorithm for Headhunter Shutdown

The Headhunter before shutdown withdraws from the DSM, leaves the multicast group

and terminates all the active processes.

HH_SHUTDOWN

// Withdraw Headhunter registration from DSM

CALL DSM_WITHDRAW on dsm with hhLocation

// Leave multicast group.

LEAVE multicast group at multicastAddress

// Stop all active threads of control..

STOP HH_SEND_MULTICAST_COMMUNICATION

STOP HH_FAILURE_DETECTION

HH_SHUTDOWN

4.7 Meta-Repositry (MR)

The Meta-Repository is a data store that holds service information of components

adhering to different models. The Meta-repository stores the Meta level service

81

information comprising of: a) Service type name, b) Details of its informal specification,

and c) Zero or more QoS values for that service for each of the components. The

implementation of a Meta-Repository is database-oriented and all the component

information is stored onto a database. Using a database implementation provides an

opportunity to perform searches for components matching the search criteria by using the

inbuilt searching techniques. The Meta-Repository is a passive component, i.e., a

Headhunter brings information and stores it in the meta-repository.

4.8 Active Registry (AR)

The native registries (e.g., RMI Registry or CORBA registry) are extended to

have the following features:

• Activeness: The registries are modified to be able to listen to multicast messages

from the Headhunter and respond with their registry location information.

• Introspection Capabilities: The registries are extended to not only keep a list of

component URLs of those components registered with them but also their detailed

UniFrame specifications. This is achieved by querying the components (using

principles of introspection) to obtain the URL of their XML based specifications.

The registries parse the specification and maintain the details in a memory

resident table, which is returned to the Headhunter upon request.

82

4.8.1 Algorithms for AR Functions

Data structures used:

Hash table componentTable Mapping between Component ID and

component specification details.

Entity componentEntity An entity, which can be persisted to a

repository and holds all the attributes

corresponding to the UniFrame

specification with access modifiers for

accessing the attributes.

 Table 4.6. Data Structure for AR functions.

4.8.1.1 Algorithm for AR Initialization

The algorithm for AR initialization involves contacting the DSM for an

authenticated packet of the multicast address and the secret-key. Using the multicast

address the AR joins the multicast group and starts listening for multicast communication

from the Headhunters on this multicast group.

AR_INITIALIZATION

 IN: DSMLocation

 // Obtain handle to DSM which runs at well-known location

 dsm = LOOKUP DSMLocation

/* Obtain an authenticated packet by contacting the DSM. Pass the authentication

information (userType, userName, password, contactLocation , domain) to the

DSM and wait for response */

authenticatedPacket =

CALL DSM_AUTHENTICATION_SERVICE of dsm with

 userType, userName, password, contactLocation, domain

83

 //Extract multicast address and secret-key from authenticatedPacket.

multicastAddress = GET multicastAddress from authenticatedPacket

secretKey = GET secretKey from authenticatedPacket

// Once multicast address is obtained join the multicast group.

JOIN multicast group with multicastAddress

 START AR_RECEIVE_MULTICAST_COMMUNICATION

ACTIVATE AR_GET_COMPONENT_DATA

END_AR_INITIALIZATION

4.8.1.2 Algorithm for AR Receiving Multicast Communication

This algorithm outlines the process in which an AR receives multicast communication

from the Headhunters. On receiving the Headhunter multicast messages with its location

information the AR decrypts the message using the secret-key and unicasts it’s encrypted

contact location to the Headhunter.

AR_RECEIVE_MULTICAST_COMMUNICATION

 IN: encryptedHeadhunterLocation

 WHILE TRUE

IF contacted by Headhunter with encryptedHeadhunterLocation

/* Receive encrypted Headhunter location information multicast to

registry by Headhunters. Decrypt the location information using

secret-key. */

HeadhunterLocation =

 DECRYPTsecretKey {encryptedHeadhunterLocation}

//Get a handle to the headunter running at the location

Headhunter = LOOKUP HeadhunterLocation

CALL HH_RECEIVE_UNICAST_ COMMUNICATION on

Headhunter with registryLocation

84

 ENDIF

ENDWHILE

END_ AR_RECEIVE_MULTICAST_COMMUNICATION

 4.8.1.3 Algorithm for Obtaining UniFrame Specifications of Registered Components

This algorithm outlines the process for obtaining the UniFrame specifications of

the components registered with an AR. The AR gets a URL list of all the components

registered with it. It then steps through this list and gets a handle to each of these

components. Using the component reference, the AR examines the component’s

properties to check for a property returning the URL of its UniFrame specification. The

AR then reads the XML-based UniFrame specification from the URL and parses this

specification to obtain all the component details, which it stores in an entity object

componentEntity. The AR builds a hash table of such entities corresponding to each of

the components registered with it and returns this hash table to the Headhunter.

AR_GET_COMPONENT_DATA

 OUT: componentTable

 WHILE TRUE

 IF contacted by HH to retrieve component data

CREATE a new componentTable

//Obtain a list of object URL’s of all objects registered with this

// registry.

registeredServicesURLList = GET LIST of service components

 registered with this Active Registry

 // For each object in this URL list

FOR i=0 to LENGTH of registeredServicesURLList

registeredServiceURL = registeredServicesURLList[i]

// Lookup and obtain the reference to the services from the

85

// registry using the registered service URL.

serviceObject = LOOKUP registeredServiceURL

// Obtain the location (URL) of the UniFrame Specification

// for this service by introspecting its property name called

// “uniFrameSpecification”.

uniFrameSpecURL =

CALL AR_INTROSPECT_PROPERTY with

 serviceObject, “uniFrameSpecification”

// Parse the UniFrame Specification and construct a

// componentEntity which can be persisted.

CREATE a componentEntity

 document = PARSE uri and load XML document

CALL AR_PARSE_UNIFRAME_SPEC with document

//Add the component to the componentTable

PUT < registeredServiceURL, componentEntity>

 in componentTable

 ENDFOR

 RETURN componentTable

 ENDIF

 ENDWHILE

END_AR_GET_COMPONENT_DATA

4.8.1.4 Algorithm for Parsing the UniFrame Specification

This algorithm uses recursion to parse through the nodes of the XML tree, extract the

node values and store these values in the componentEntity. The algorithm starts parsing at

the root node element. It extracts the node name and checks if the node name matches

any attribute in componentEntity and populates it with the value in this node. It then finds

all the children of that node and repeats the process through recursion.

86

AR_PARSE_UNIFRAME_SPEC

 IN: nodeElement

 nodeName = GET NODE NAME from nodeElement

 FOR each attribute in componentEntity

 IF nodeName EQUALS attribute

nodeValue = GET NODE VALUE from nodeElement

 SET attribute value in componentEntity to nodeValue

 ENDIF

 ENDFOR

// Get the list of children for this Node.

NODELIST childrenList = GET CHILDNODES for nodeElement

IF childrenList NOT NULL

 // For every child node in the list

 FOR i = 0 to LENGTH of childrenList

 childNode = childrenList[i]

// Recurse through the function READ_NODE passing it the

// childNode as reference.

 CALL AR_PARSE_UNIFRAME_SPEC with childNode

 ENDFOR

 ENDIF

END_AR_PARSE_UNIFRAME_SPEC

4.8.1.5 Algorithm for Introspection of the Registered Components

This algorithm outlines the process for examining a service object to find a specific

property and retrieve its value. The algorithm gets a list of all the properties from the

service object and tries to find a match for the specific property of interest. Once the

87

property is found, a handle to the Read accessor method (getter) of this property is

obtained and invoked.

AR_INTROSPECT_PROPERTY

 IN: serviceObject, propertyName

 OUT: property

 //Introspect and retrieve all information pertaining to this service object.

 serviceObjectInfo = INTROSPECT serviceObject to retrieve object information

 //Get a description list of all properties of this object.

 propertyDescriptorList =

GET PROPERTY DESCRIPTORS from serviceObjectInfo

 //Iterate through the description list to find the desired property.

 FOR i=0 to LENGTH of propertyDescriptorList

 propertyDescriptor = propertyDescriptorList[i]

 propertyDescriptorName = GET NAME of propertyDescriptor

 //If the property descriptor name matches the desired property name

 IF propertyDescriptorName EQUALS propertyName

 //Get the accessor method that returns the property value.

 method = GET READ METHOD of propertyDescriptor

 //Invoke the method to retrieve the value.

 property = INVOKE method of serviceObject

 //Return this property to the requester.

 RETURN property

 ENDIF

 ENDFOR

END_AR_INTROSPECT_PROPERTY

88

4.9 Services

Service Exporter Components are implemented in different models, e.g., Java

RMI, CORBA, EJB, etc. The components are identified by their Service Offers

comprising of service type name, b) informal UniFrame specification, and c) zero or

more QoS values for that service. A component registers its interfaces with an Active

Registry. The component interface contains a method, which returns the URL of its

informal specification. The informal specification is stored as an XML file adhering to

certain syntactic contracts to facilitate parsing. These service exporter components will be

tailored for specific domains such as Financial Services, Health Care Services,

Manufacturing Services, etc., and will adhere to the relevant standards, business

architectures, and research and technologies for these industry specific markets.

This chapter presented the high-level design for the components in the URDS

architecture. The next chapter presents a prototype implementation for the URDS

architecture.

89

5. IMPLEMENTATION OF THE URDS ARCHITECTURE

Chapter 4 provided a conceptual perspective of the URDS architecture. The

architecture presented did not adhere to any specific implementation methodology. The

URDS architecture can be realized using several different software/hardware

technologies. This chapter describes a prototype implementation for the URDS

architecture using Java and Java based technologies.

 The chapter is organized as follows: Section 5.1 presents technological artifacts

and architectural models, which were used in the prototype implementation. Section 5.2

presents the prototype implementation followed by experimental results from the

prototype in Section 5.3. Section 5.4 outlines implementation strategies that can be used

to enhance the prototype implementation.

5.1 Technology

 This section describes various architectural artifacts and technologies that have

been leveraged in the implementation the URDS architecture.

5.1.1 Web Servers and Application Servers

 A Web Server consists of computer hardware and software programs that serve up

static content like HTML pages, images and documents to remote browsers accessing the

web server. Web Servers are assigned IP addresses using which remote applications can

90

access it using the HTTP protocol. Web Servers are also called HTTP servers. Examples

for Web Servers include the IBM Http Server [IBMa], iPlanet Web Server Enterprise

Edition [IPL], and Apache Http Server [APA].

Application Servers are software components that collaborate with Web Servers

to return customized results (dynamic content) to a client’s request. Examples of

Application servers include IBM WebSphere Application Server [IBMb], WebLogic

[BEA], and IIS [MIC]. Figure 5.1 illustrates the relationship between Browsers/Clients,

Web Servers and Application Server. The browser clients communicate with the web

servers using HTTP protocol. The web servers in turn communicate with the application

servers to retrieve dynamic content, which is returned to the clients. The application

servers communicate with back-end database systems/directory servers using standard

communication protocols.

Figure 5.1. Interaction between Clients, Web Servers and Application Servers.

5.1.2 JavaTM 2 Platform Enterprise Edition (J2EETM)

The prototype implementation is based on the architectural model laid out by

[SUN01b] in J2EETM. J2EETM defines a standard that applies to all aspects of

91

architecting, developing, and deploying multi-tier, server-based applications. Figure 5.2

[SUN01b] shows the components of the J2EE Model.

Figure 5.2. Components and Containers of J2EE Model.

(Figure 5.2 is courtesy SUN Microsystems, [SUNa])

The J2EETM platform specifies technologies to support multi-tier enterprise

applications. These technologies fall into three categories [SUN01b]: Component,

Service, and Communication. The following sub-sections outline the technologies (see

Figure 5.2) in each of these categories that have been used in the implementation. (The

Java based technologies described in these sections are proprietary technologies of SUN

Microsystems [SUN01b]).

5.1.2.1 Component Technologies

Components are application-level software units. All J2EE components depend on

the runtime support of a system-level entity called a “Container”. Containers provide

92

components with services such as life cycle management, security, deployment, and

threading.

The J2EE Component technologies have been used in the prototype to create the

front-end client components and back-end service components. The prototype supports

two types of clients: Application Clients which are structured as Application Client

Components (described in section 5.1.2.1.1) and Web Clients, which interact with the

Web Components (described in section 5.1.2.1.2). The prototype also uses the JavaBean

Components (described in section 5.1.2.1.3) in the client and server tiers of the

implementation.

The different types of J2EE components used in the prototype are described

below:

5.1.2.1.1 Application Client Components

 Application clients are client components that execute in their own Java virtual

machine. Application clients are hosted in a Application Client Container.

5.1.2.1.2 Web Components

A Web Component is a software entity that provides a response to a request. The

J2EE platform specifies two types of Web components: Servlets and JavaServer PagesTM

(JSP) pages. A Web Container hosts web components.

• Java Servlet Technology 2.3: Servlets extend the capabilities of web servers that

host applications accessed by way of a request-response programming model.

Java Servlet technology has provisions for defining HTTP-specific servlet classes.

Although servlets can respond to any type of request, they are commonly used to

extend the applications hosted by Web servers.

• JavaServer Pages Technology 1.2: The JavaServer Pages (JSP) technology

provides an extensible way to generate dynamic content for a Web client. A JSP

93

page is a text-based document that describes how to process a request to create a

response. It contains two types of text: static template data, which can be

expressed in any text-based format such as HTML, WML, and XML, and JSP

elements (snippets of servlet code), which determine how the page constructs

dynamic content.

5.1.2.1.3 JavaBean and Enterprise JavaBean Components

A JavaBean Component is a body of code with fields and methods to implement

modules of business logic. The server and client tiers can include components based on

the JavaBeans component architecture. Enterprise JavaBeans are server-side components

that encapsulate the business logic of an application and support enterprise level

processing by making the JavaBeans scalable, transactional, and multi-user secure. An

EJB container hosts Enterprise beans.

5.1.2.2 Service Technologies

The J2EE platform service technologies allow applications to access a variety of

services. The prominent service technologies supported are JDBCTM API 2.0 which

provides access to databases, Java Transaction API (JTA) 1.0 for transaction processing,

Java Naming and Directory Interface (JNDI) 1.2 which provides access to naming and

directory services, and J2EE Connector Architecture 1.0 which supports access to

enterprise information systems.

The service technologies used in the prototype are described below:

• JDBCTM API 2.0: The JDBCTM API provides methods to invoke SQL commands

from Java programming language methods. The JDBC API has two parts: an

application-level interface used by the application components to access a

database, and a service provider interface to attach a JDBC driver to the J2EE

platform.

94

• Java API for XML Processing 1.1: XML is a language for representing text-based

data so the data can be read and handled by any program or tool. Programs and

tools can generate XML documents that other programs and tools can read and

handle. Java API for XML Processing (JAXP) supports processing of XML

documents using DOM, SAX, and XSLT parsers. JAXP enables applications to

parse and transform XML documents independent of a particular XML processing

implementation.

5.1.2.3 Communication Technologies

Communication technologies provide mechanisms for communication between

clients and servers and between collaborating objects hosted by different servers. Some

of the communications technologies supported by the J2EE Platform include - Transport

Control Protocol over Internet Protocol (TCP/IP), Hypertext Transfer Protocol HTTP 1.0,

Secure Socket Layer SSL 3.0, Java Remote Method Protocol (JRMP), Java IDL, Remote

Method Invocation over Internet Inter ORB Protocol (RMI-IIOP), Java Message Service

1.0 (JMS), JavaMail and Java Activation Framework.

 The prototype uses the HTTP 1.0 Protocol for communication between the

browser-based clients and server side components. The inter-component communication

on the server side is achieved through Java Remote Method Invocation.

The protocols used in the prototype are described below.

• HTTP 1.0 Protocol: The Hypertext Transfer Protocol (HTTP) is an application-level,

generic stateless protocol for distributed, collaborative, hypermedia information

systems.

• Java Remote Method Protocol (JRMP): Remote Method Invocation (RMI) is a set of

APIs in the Java programming language that enables developers to build distributed

applications. RMI uses Java language interfaces to define remote objects and a

95

combination of Java serialization technology and the Java Remote Method Protocol

(JRMP) for performing remote method invocations.

5.2 Prototype Implementation

This section describes an implementation of a prototype for the URDS

architecture described in Chapter 4. Figure 5.3 illustrates this implementation. The

architecture is implemented as a multi-tier, distributed application model, which means

Figure 5.3. URDS Implementation

96

that the various parts of the prototype implementation can run on different machines. This

is in conformance with the J2EE architecture, which defines a client tier, a middle tier

(consisting of one or more sub tiers), and a backend tier providing services of enterprise

information systems. In the prototype, the client tier supports a variety of client types,

both application clients as well as web-based clients. The middle tier supports client

services through Web containers in the Web tier. The middle tier also supports the

component services (DSM, QM, LM, HH, AR which form the core of the URDS

architecture) as Java-RMI based services. The Database tier supports access to the

repositories by means of standard APIs.

5.2.1 Platform and Environment

In the prototype, the algorithms outlined for the various components are

implemented using the JavaTM 2 Platform, Standard Edition (J2SE) [SUNb] version 1.4

software environment. The core architectural components (DSM, QM, LM, HH, and AR)

are implemented as Java-RMI based services. The repositories (DSM_Repository and

Meta_Repositories) are database-oriented implementations based on Oracle v 8.0. The

web-based components (JSPs), which service client interactions, are housed in the

Tomcat 4.0 Servlet/JSP Container.

5.2.2 Communication Infrastructure

The unicast communication between the core architectural components is based

on JRMP. The multicast communication between HHs and ARs is achieved through

Multicast Sockets based on UDP/IP. The connections to the databases are established

using JDBC APIs. Interactions between the clients (users) and the web components are

based on HTTP protocol.

97

5.2.3 Security Infrastructure

The security infrastructure in the URDS utilizes the security and cryptography

APIs that form a part of the JavaTM Cryptography Architecture (JCA) [SUN02] and

JavaTM Cryptography Extension (JCE) frameworks [SUN00]. The specifications outlined

in the JCA encompass the parts of the Java 2 SDK Security API related to cryptography.

The JCE provides a framework and implementations for encryption, key generation and

key agreement, and Message Authentication Code (MAC) algorithms. The JCA and JCE

frameworks are based on the concepts of “engine classes” and a “provider” architecture.

An engine class defines a cryptographic service in an abstract fashion (without a concrete

implementation). The actual implementations (from one or more providers) are those for

specific algorithms. A “provider” refers to a package or set of packages that implement

one or more cryptographic services, such as digital signature algorithms, message digest

algorithms, and key generation algorithms. The JCE Provider used in the prototype is the

“SunJCE”[SUN00] which comes as a pre-installed and registered standard JCE Provider

with the Java 2 SDK, v 1.4 release.

5.2.4 Programming Model

In the implementation of the prototype, the URDS functionality is partitioned into

modules, and these modules are decomposed into specific objects to represent the

behavior and data of the application. The prototype adapts the Model-View-Controller

(MVC) architecture. The MVC architecture [GAM95, YOU95] can be described as:

“The Model represents the application data and the rules that govern access and

modification of this data. The View renders the contents of a model. It accesses data from

the model and defines how that data should be presented. The Controller defines

application behavior; it translates user gestures into actions to be performed by the

model”.

98

5.2.4.1 Implementation Details

In order to structure an application along the lines of the MVC architecture it is

necessary to divide the application into objects and assign these objects to tiers. This

process is referred to as object decomposition. Typically an application can be divided

into three logical categories of objects: “These are objects that deal with presentation

aspects of the application, objects that deal with the application rules and data, and

objects that accept and interpret user requests and control the application objects to

fulfill these request” [SUNa].

Following sections outline the object decomposition in the prototype along the

lines of the MVC architecture and explain the functionality served by each of these

objects in the prototype.

5.2.4.1.1 The Model

This section explains the subdivision of components in the “Model” segment of

the architecture. The components in this segment have been categorized as: Entity

Objects, Helper Objects, Persistent Data, and the Component Services depending on their

functionality.

5.2.4.1.1.1 Entity Objects

Entity objects serve to represent the individual rows in a database as objects or to

encapsulate an application specific concept in terms of an object. The entity objects in the

prototype support accessor methods to set and retrieve the values of the attributes they

hold. These objects can be passed by value as serializable Java objects. The prototype

contains the following entity objects ComponentBean, FunctionBean, QueryBean,

AuthenticatedPacket whose class diagrams are illustrated in Figure 5.4.

99

Figure 5.4. Class Diagrams for the URDS Entity Objects

Following is an explanation of these entity objects.

ComponentBean: The attributes of the ComponentBean class mirror the fields of the

table Component (see Section 5.2.4.1.1.3). The ComponentBean internally holds a list of

FunctionBean objects. The ComponentBean has functionality built in to persist it to a

database.

FunctionBean: The attributes of the FunctionBean mirror the fields of the table Function

(see Section 5.2.4.1.1.3). The FunctionBean has functionality built in to persist it to a

database.

100

QueryBean: The QueryBean encapsulates the attributes of a Query received from the

 client. The bean also has the logic associated with generating a SQL query based on the

attributes it holds.

AuthenticatedPacket: The AuthenticatedPacket encapsulates the multicast address and

secret-key returned to the principals (Headhunters/ActiveRegistries) by the Domain

Security Manager.

5.2.4.1.1.2 Helper Objects

The prototype uses Helper objects for purposes such as data access or for

performing specific utility functions. The following classes serve as Helper classes and

have been sub-classified under the categories of Data Access Objects and Dependent

Objects.

5.2.4.1.1.2.1 Data Access Objects

 The data access objects used in the prototype encapsulate access to databases.

Figure 5.5. Class Diagrams for the Data Access Objects

101

Figure 5.5 illustrates the class diagrams of the data access objects. A description of the

data access objects used in the prototype is provided here:

DSMRepositoryHelper: This class performs functions associated with accessing the

DSM_Repository to retrieve user-domain mappings and for user authentication.

MetaRepositoryHelper: This class performs functions associated with accessing the

Meta_Repository to retrieve search results.

SQLEngine: This class acts as a wrapper, which encapsulates the essential, JDBC API

methods and performs functions associated with establishing database connections and

executing the queries. It is used by the DSMRepositoryHelper and MetaRepositoryHelper

classes.

5.2.4.1.1.2.2 Dependent Objects

The prototype uses dependent objects for performing utility functions. These

dependent objects are immutable and the objects that create and use them manage their

life cycle.

Figure 5.6 illustrates the class diagrams of the dependent objects. A description of the

dependent objects is provided below:

CreateKey: This utility class is used to generate secret-keys. The keys are generated

using a SUN provided engine class javax.crypto.KeyGenerator, which provides the

functionality of a (symmetric) key generator. An instance of the

javax.crypto.KeyGenerator class is obtained by specifying the Provider and the algorithm

for key generation. The Provider used is the “SunJCE” an instance of which can be

obtained by instantiating the com.sun.crypto.provider.SunJCE class. The algorithm

specified is “DES” (Data Encryption Standard) [DES77].

102

Figure 5.6. Class Diagrams for the Dependent Objects

CryptObj: This class provides the utility functions for encrypting and decrypting data.

The class utilizes a SUN provided engine class javax.crypto.Cipher, which is capable of

carrying out encryption and decryption according to an encryption scheme (algorithm).

An instance of the Cipher class can be obtained by specifying a transformation of the

form "algorithm/mode/padding". The transformation used in the prototype is

"DES/ECB/PKCS5Padding" where algorithm = “DES”, mode = “ECB” (Electronic

Codebook Mode) [ECB80] and padding = “PKCS5Padding” (The Public Key

Cryptography Standards #5)[RSA93]. Modes and padding schemes are present in the

Cipher class because that class implements what is known as a block cipher; that is, it

expects to operate on data one block (e.g., 8 bytes) at a time. Padding schemes are

required in order to ensure that the length of the data is an integral number of blocks.

Modes are provided to further alter the encrypted data in an attempt to make it harder to

103

break the encryption. The CryptObj class encrypts an object with a cryptographic

algorithm to create an instance of javax.crypto.SealedObject.

ObjectSerializer: This utility class converts an object to byte array and reconstructs an

object from byte array. To be used in secure multicast for serializing Sealed Objects.

UniFrameIntrospector: This utility class uses reflection to analyze the properties of an

object and retrieve the value corresponding to a specific attribute.

UniFrameSpecificationParser: This class is used to parse a UniFrame XML

specification file and construct an instance of the ComponentBean.

MulticastSender: This class operates as a Thread which executes periodically. This

Thread has a connection to a MulticastSocket to which it keeps multicasting

DatagramPackets at regular intervals of time. This thread utilizes the CryptObject and

ObjectSerializer Helper objects to multicast encrypted serialized messages.

MulticastReceiver: This class operates on a Thread, which constantly listens for

multicast messages on a MulticastSocket and receives the incoming DatagramPackets.

This thread utilizes the CryptObject and ObjectSerializer Helper objects to decrypt and

reconstruct the multicast messages received.

5.2.4.1.1.3 Persistent Data

The prototype maintains persistent data in database tables. These databases are

associated with the service components (i.e. DSM and HH). The databases used in the

prototype are the DSM_Repository and the Meta_Repository.

104

DSM_Repository

Figure 5.7 illustrates the schema for the DSM_Repository.

 Figure 5.7. DSM_Repository

The DSM_Repository comprises of four tables Users, Permissions,

User_Permission_Xref, and DomainList.

The Users table serves to hold the Headhunter/ActiveRegistry information. The

columns of this table are userid (numeric identifier), usertype (whether Headhunter or

Registry), username, and password. The primary-key in this table is the userid. Example

of a record of this table is as follows: <1,’Headhunter’, ‘Headhunter1’, ‘xxxx’>.

The Permissions table serves to hold a list of allowed permissions (or domains).

The columns in this table are permissionid (numeric id for permission) and

permissionname (domain name like Finance, Manufacturing, etc.,). The permissionid

serves as the primary-key for this table. Example of a record of this table is as follows:

<1, ‘Manufacturing’>.

105

The User_Permission_Xref table serves to map the permission to be assigned to a

user. The table contains two numeric columns userid which references the userid in

Users and permissionid which references permissionid in Permissions. The combination

of the <userid,permissionid> serve as the primary key. Example of a record of this table

is as follows: <1, 2>.

The DomainList table serves to hold the list of multicast addresses and the

domains that they map to. The table contains two columns domainid, which references

permissionid of Permissions and domainaddress, which serves to hold the multicast

address. The combination of the < domainid, domainaddress > serve as the primary key.

Example of a record of this table is as follows: <1, ‘224.2.2.2’>.

Meta_Repository

Figure 5.8 illustrates the schema for the Meta_Repository.

 Figure 5.8. Meta_Repository

106

The Meta_Repository comprises of two tables Component, Function.

The Component table serves to hold the UniFrame Specification information of

the components. The columns of this table are id (alpha numeric compinent id), and other

variables which describe a component like name, description, function, algorithm,

complexity, domain, technology, collaborators,end2endDelay, availability, mobility. The

primary-key in this table is the id. Example of a record of this table is as follows:

<'intrepid.cs.iupui.edu','AccountServer','Provides An Account Management System','Acts

As An Account Server','Simple Addition And Subtraction','O(1)','Financial','Java-

RMI','AccountClient',10,100,'No'>

The Function table serves to hold a list of all functions and the syntactic contracts

. The columns in this table are id which references id of the Component table,

function_name and syntactic_contract. The combination of <id, function_name,

syntactic_contract > serves as the primary-key for this table. Example of a record of this

table is as follows: <'intrepid.cs.iupui.edu','javaDeposit','void javaDeposit(float ip)'>

5.2.4.1.1.4 Service Components

A service component here refers to a software unit that provides a service. The

service provided could be a computational effort or an access to underlying resources. A

service component consists of one or more artifacts (software, hardware, libraries) that

are integrated together to provide the service. Service Components are described by a

remote interface and an implementation for this interface. Each Service Component is a

stand-alone functional unit, which accepts inputs through its published interfaces, and

returns results. Clients or other components can remotely access a service component

using standard communication protocols. For a component to be remotely accessible, it

should be deployed in a runtime environment (e.g. Application Server) with ports open to

receive incoming requests and return results.

107

Figure 5.9 describes an example of a stand-alone remote accessible service

component, which uses the HTTP protocol to accept and return results.

Figure 5.9. Example of a Stand-Alone Remote Accessible Service Component.

The service components implemented in the prototype are the DSM, QM, HH,

and AR. These service components utilize the Entity Objects and Helper Objects to

achieve their functionalities and store and retrieve information from their respective

repositories.

108

Figure 5.10. Class Diagrams for the Service Components

Figure 5.10 illustrates the class diagrams of the Service Components. The following sub-

sections describe these service components.

5.2.4.1.1.4.1 Domain Security Manager Service

IDomainSecurityManager: This is the interface for the DomainSecurityManager service.

This interface publishes two methods:

• getHHListForDomain: This method is invoked by the QueryManager. The

purpose of this method is to return a list of registered Headhunters for a particular

domain to the QueryManager.

• authenticationService: This method is invoked by the Headhunter and

ActiveRegistry components to authenticate themselves with the DSM.

DomainSecurityManager: This class implements IDomainSecurityManager interface.

The implementation is based on the algorithms outlined for the DSM in Chapter 4. The

109

DSM performs the functions of generating secret-keys for the domains using the

CreateKey helper class. It authenticates the principals against the DSM_Repository with

the help of the DSMRepositoryHelper and distributes the secret-keys and multicast

addresses to Headhunters and Active Registries. The communication between the parties

is based on RMI-JRMP.

5.2.4.1.1.4.2 Query Manager Service

IQueryManager: This is the interface for the QueryManager service. This interface

publishes the following method:

• getSearchResultTable: This method is invoked by the RequestProcessor to obtain

a list of services matching the search criteria specified by a component assembler.

QueryManager: This class implements the IQueryManager interface. The

QueryManager class propagates the search query as a QueryBean object to the list of

Headhunter components obtained from DomainSecurityManager and returns search

results to the RequestProcessor. The interaction between these components is based on

RMI-JRMP.

5.2.4.1.1.4.3 Headhunter Service

IHeadhunter: This is the interface for the Headhunter service. This interface publishes

the following methods:

• performSearch: This method is invoked by the QueryManager to propagate a

search query.

• receiveUnicastCommunication: This method is invoked by the ActiveRegistry to

inform the Headhunter of its location.

Headhunter: This class implements the IHeadhunter interface. The implementation is

based on the algorithms outlined in the previous Chapter for the Headhunter functions.

The Headhunter class interacts with the QueryManager and DomainSecurityManager

110

using RMI-JRMP. The Headhunter uses the MulticastSender to multicast encrypted

messages to ActiveRegistry services. The Headhunter also communicates with the

ActiveRegistry services through unicast RMI-JRMP for the purpose of obtaining the

component information as a Hashtable of ComponentBean objects. The HeadHunter

saves this component information to the Meta_Repository and uses the

MetaRepositoryHelper for the purpose of performing searches against the repository. The

SQL query for the searches is obtained from the QueryBean which is propagated to the

Headhunter by the QueryManager.

5.2.4.1.1.4 Active Registry Service

 IActiveRegistry: This is the interface for the ActiveRegistry service. This interface

publishes the following method:

• getComponentData: This method is invoked by the Headhunter to retrieve

component information from the ActiveRegistry.

ActiveRegistry: This class implements the IActiveRegistry interface. The implementation

is based on the algorithms outlined in the previous Chapter for the ActiveRegistry

functions. The ActiveRegistry class receives multicast messages from the Headhunter by

using the MulticastReceiver class. Interaction with the Headhunter for passing its contact

information and component information are done through RMI-JRMP. It also

communicates with the DomainSecurityManager for authentication purposes using RMI-

JRMP. The ActiveRegistry uses the UniFrameIntrospector for the purpose of obtaining

the UniFrame specifications of the components registered with it. It also uses the

UniFrameSpecificationParser for parsing the specifications and building instances of

ComponentBean objects, which it returns to the Headhunter.

5.2.4.1.2 The View

The view determines the presentation of the user interface of the prototype. The

components that work together to implement the view are the JSP pages and the

111

JavaBeans components. The JSP pages are used for dynamic generation of HTML

responses. JavaBeans components represent the contract between JSP pages and the

model. JSP pages rely on these beans to read model data to be rendered to HTML. The

following are the JSP pages, which present a View to the user: UniFrameQuery.jsp (see

Figure 5.11 and Figure 5.12), ComponentList.jsp (see Figure 5.13), ComponentDetail.jsp

(see Figure 5.14). The controller functionality associated with these views is explained in

Section 5.2.4.1.3.

 Figure 5.11 UniFrameQuery.jsp View

Figure 5.11 and 5.12 illustrate the UniFrameQuery.jsp view which allows the component

assembler or system integrator to specify various search criteria.

112

 Figure 5.12 UniFrameQuery.jsp View Continued.

 Figure 5.13 ComponentList.jsp View

113

Figure 5.13 above illustrates the view ComponentList.jsp. In this view the list of

components matching the search criteria is displayed to the component assembler. The

user can click on the Component Details hyperlink to view the details of a particular

component which takes them to the next view ComponentDetails.jsp illustrated in Figure

5.14. The ComponentDetails.jsp view provides all the information specified by the

component developer in the UniFrame specification of the component.

Figure 5.14 ComponentDetail.jsp View

5.2.4.1.3 Controller

The prototype must reflect the state of a user's interaction with the discovery

service and the current values of persistent data in the user interface. Following the MVC

architecture, this functionality is implemented within the controller. The controller is

responsible for coordinating the model and view. The following controller components

provide this functionality in the prototype:

114

UniFrameQuery.jsp: Receives and processes HTTP requests. The servlet generated from

UniFrameQuery.jsp receives all HTTP requests.

ProcessUniFrameQuery.jsp: Processes the information from the HTTPRequest to create

an instance of QueryBean and passes it to the RequestProcessor, which coordinates all

handling of the request.

RequestProcessor: RequestProcessor provides the glue in the Web tier for holding the

application components together. It contains logic that needs to be executed for each

request. RequestProcessor collaborates with the QueryManager and gets a Hashtable of

search results from the QueryManager, which it forwards to the View ComponentList.jsp.

ComponentList.jsp: Provides a master view of the lists of components matching the

search criteria.

ComponentDetail.jsp: Provides a detail view that describes the details of a particular

component. Users click on an item in the master view to zoom in on details, including a

description, and other details of the UniFrame specifications.

5.2.4.1.3.1 Managing the State of a Session

Every client session needs to track the information associated with the client

requests (client query) and the associated responses (results matching the search criteria).

In the JSPs an HTTP session object maintains the JavaBeans that are specific to a client.

The following state information is maintained.

Query Information: The information associated with the client query is captured in the

QueryBean and passed on to the QueryManager via the RequestProcessor.

The Query Results: The RequestProcessor class maintains a list of results matching the

search criteria. The result list is stored as a Hashtable of ComponentBean objects within

115

the RequestProcessor class. These results are displayed in the ComponentList.jsp view to

the users.

5.3 Experimental Results

 Some experimental tests were conducted to validate the performance of the

prototype. The Service Components in the experimental setup comprised of one ICB

(having a QueryManager and a DomainSecurityManager), one Headhunter and one

ActiveRegistry (extended RMI registry). A single client (Application Client Component)

was used in the experiment. The experimental tests were conducted with queries having

different types of search constraints.

 The measurements presented are averaged over 100 trials and were conducted on

Sun Solaris machines running Sun Solaris Unix v5.8. Sun’s JDK 1.4 was used to run the

components of the URDS system.

The following performance metrics were gathered:

Average Authentication Time (Tauth): This is computed as the time taken by the

DomainSecurityManager to authenticate a principal. It is computed from the time a

Headhunter/ActiveRegistry sends the DSM its authentication credentials to the time it

receives a response from the DSM.

Average Query Service Time (Tquery): This is the average time taken to service a query. It

is computed from the time a query is presented by a client to the URDS system to the

time a response is received.

Average Registry Discovery Time(Tdiscovery): This is the average time taken by a

Headhunter to discover an ActiveRegistry. It is computed from the time the Headhunter

multicasts its location to the time it receives a response from the Registry. This time

116

includes the time taken by the ActiveRegistry to decrypt the encrypted multicast

communication received from the Headhunter.

Average Component Information Retrieval Time (Tinfo-retrival): This is the average time

taken by the Headhunter to retrieve component information from an ActiveRegistry. It is

computed from the time the Headhunter requests an ActiveRegistry for component

information to the time it receives a response from the ActiveRegistry. This time includes

the time taken by an ActiveRegistry to obtain the UniFrame Specification URLs from the

list of components registered with it and to parse the XML specifications to extract the

component information.

The Average Authentication Time was computed to be = 690.5 millisecs.

The Average Query Service Time, Average Registry Discovery Time, and Average

Component Information Retrieval Time were calculated for the following two cases:

Varying the Time period between successive multicast cycles of the Headhunter (Tmcast)

keeping the Number of Components (Ncomponents) registered with the Active Registry

constant.

Varying the Number of Components (Ncomponents) registered with the Active Registry

keeping the Time period between successive multicast cycles of the Headhunter (Tmcast)

constant.

Figure 5.15 shows the variation of Tquery, Tdiscovery , Tinfo-retrival with Ncomponent when Tmcast

was kept constant at 5000 ms. It can be observed from the graph that the average time

taken the Headhunter to discover registries and the average time taken to service a query

increase marginally with an increasing number of registered components. However, the

time taken by the Headhunter to retrieve component information from the registries

increases substantially with increasing number of registered components.

117

Variation of Tquery, Tdiscovery , Tinfo-retrival with Ncomponent
(Constant Tmcast = 5000 ms)

0

500

1000

1500

2000

2500

Number of Components

A
ve

ra
ge

 T
im

e
(m

s)

HH Component Info Retrieval 255.25 964.75 1337.5 1881.12 2090.75

Registry Discovery 16.27 26.18 29.27 33.55 33.91

Service Query 279 320 372 552 648

10 20 30 40 50

 Figure 5.15 Variation of Tquery, Tdiscovery , Tinfo-retrival with Ncomponent

Figure 5.16 shows the variation of Tquery, Tdiscovery , Tinfo-retrival with Tmcast when

Ncomponent was kept constant at 10. It can be observed from the graph that the average time

taken the Headhunter to discover registries remains almost constant with increase in time

period between successive multicasts. The average time taken to service a query and the

time taken by the Headhunter to retrieve component information from the registries also

do not show much variation until the time period between multicast cycles is increased to

5000 ms, when they show an increase in the time taken.

118

Variation of Tquery, Tdiscovery , Tinfo-retrival with Tmcast (Constant # components = 10)

0

50

100

150

200

250

300

Periodic Multicast Time (ms)

A
ve

ra
ge

 ti
m

e
(m

s)

HH Component Info Retrieval 182.75 189.75 172.75 170.5 255.25

Registry Discovery 16.91 12.36 15.45 16.18 16.27

Service Query 235 229 227 211 279

1000 2000 3000 4000 5000

 Figure 5.16. Variation of Tquery, Tdiscovery , Tinfo-retrival with Tmcast

5.4 Implementation Strategies for Enhancing the Prototype

This section discusses implementation strategies, to enhance the prototype at an

application level and make the implementation more scalable, fault tolerant,

maintainable, interoperable and secure. The strategies outline alternative deployment

environments or communication protocols that can be used to implement the service

components. The following are the performance areas in the implementation where these

strategies are applicable:

Improving Scalability and Fault Tolerance of the Implementation

119

The prototype application supports various services like DSM, QM, HH, etc., It is

desirable that these services be able to handle a large number of requests for services

without their efficiency being adversely affected. Services that are scalable and easy to

maintain usually have better QoS ratings. It would also be desired that these services be

“available” for service most of the time and are not “unavailable” due to reasons such as

hardware/software failure or “downtime” due to maintenance upgrades of the

software/hardware units they are deployed in.

 A suggested implementation for realizing these requirements is to deploy the

Service Components in a runtime environment such as an Application Server, which

supports the concept of Workload Management. An example of such an application

server that implements Workload Management capabilities is IBM’s WebSphere

Application Server 4.0 [IBM02].

 Workload Management (WLM) is the process of spreading multiple requests for a

service over resources that can accomplish the task. WLM balances request processing by

allowing incoming work requests to be distributed across application servers, containing

identical versions of the service called ‘Clones’, according to a configured WLM

selection policy. The software/hardware, which dispatches requests to the different

servers in the pool, is called an “IPSprayer”. Workload management is most effective

when used in systems that contain servers on multiple machines. It can also be used in

systems that contain multiple servers on a single, high-capacity machine. This enables the

system to make the most effective use of the available computing resources.

If a server in the pool is down due to reasons such as hardware/software failure or

maintenance upgrades then the requests for the services can be directed to another server

in the pool containing the service clone. WLM improves the performance, scalability and

reliability of an application by providing for load balancing and failover capabilities.

120

 Figure 5.17. Improving Scalability with WLM

Figure 5.17 illustrates WLM across two servers.

Interoperability and Asynchronous Communication

In the prototype implementation, the service components such as DSM, QM, LM,

HH, AR are implemented as Java-RMI based services which communicate with each

other via JRMP. Alternative implementations could be to structure these services as

Enterprise JavaBeans deployed in the EJB container communicating with each other via

RMI-IIOP or as SOAP based services communicating with each other via SOAP. These

protocols promote greater interoperability than JRMP. Using SOAP for inter-component

communication removes the tight coupling that currently exists between the service

components. Additionally, SOAP, being a firewall-friendly protocol, will remove the

restrictions present in the current implementation of the services having to be located

within the same subnet. This is especially a necessity in the case of the LinkManager as

this will enable federation with external LinkManager components (LinkManagers in

other ICBs) located in different networks.

121

All inter-component communication in the implementation is synchronous. The

users are waiting on the QM to return results and the QM is waiting on the Headhunters

to return results. Making these communications asynchronous and using remote event

notification will allow a user greater flexibility wherein the user need not wait until the

operation completes and results are returned. The use of asynchronous messaging allows

the development of loosely-connected systems. These systems are typically more resilient

in the event of failures, and more easily extensible as new applications are developed.

Additionally, messaging provides an effective means of transmitting events between

applications. Asynchronous messaging can be incorporated into the implementation using

Java Message Service (JMS). The service components can be structured as EJB

components, which integrate with JMS thus allowing the enterprise beans to participate

fully in loosely connected systems. The EJB service components can then

asynchronously notify other components of the occurrence of events. Remote event

notification features will allow the Model to notify the Controller of changes in events in

the model, which can be rendered as Views in the system.

Securing the Implementation

In the current prototype implementation users of the URDS discovery services are

not authenticated and there is no gradation on the levels of access that the users may

possess. However, on a going forward basis, this would be a desired feature, as service

providers may not wish to advertise their services to unauthorized users, or depending on

the privileges the users possess, they may allow access to only a certain set of

functionality as opposed to others. The authentication aspect for users can be handled

through a form based userid/password scheme. For supporting users with different

profiles, structuring the service components as EJB components allows the

implementation to leverage the role based security services offered by the EJB

architecture.

122

This chapter presented an implementation for the URDS architecture and the

experimental results. The chapter also discussed enhancements that could be made to the

prototype.

The next chapter concludes the thesis by presenting a comparison between the

URDS architecture and other resource discovery protocols discussed in Chapter 2. The

chapter also discusses possible future extensions to this work.

123

6. CONCLUSION

This thesis presented the architecture and an implementation for a resource

discovery service, the “UniFrame Resource Discovery Service”. The resource discovery

service itself forms a part of a framework, “UniFrame”, which aims at providing a

platform for building DCS by integrating existing and emerging distributed component

computing models under a common meta-model that enables discovery, interoperability,

and collaboration of components via generative software techniques. Section 6.1

discusses the features of URDS and compares it to other resource discovery services.

Section 6.2 discusses possible future enhancements to the URDS architecture.

6.1 Features of URDS

A discussion of the features of URDS and how these compare with other resource

discovery protocols is presented here:

6.1.1 Interoperability

Various resource discovery protocols available today adhere to different

“standards” and there is little interoperability between them. These protocols have been

designed to provide services for very specific models. For example, the CORBA Trader

services offer directory services only for CORBA objects, or the JINI discovery services

spontaneously discover only other JINI enabled devices. For these protocols to be

logically compatible, they need to be mapped by implementing equivalent protocols or

bridges and proxies. This defies the underlying goal of “discovery” being universal. It is

124

this interoperability gap that URDS is trying to bridge by providing discovery and

directory services for components developed using diverse distributed computing models.

URDS tackles the issue of non-uniformity with the assistance of the ICB and

Headhunter components (explained in Chapter 3 and Chapter 4). The Headhunters

discover heterogeneous components. Since the components discovered by the

Headhunters do not share common semantics for communication, the ICB provides the

capability to generate the glue and wrappers for components implemented in diverse

models to collaborate across the Internet. The ICB will eventually use standard

component mappings and component model adapters to bridge the conceptual model

disparity. Thus, URDS addresses the issue of bootstrapping between components

implemented in diverse architectures, which is not found in other resource discovery

protocols.

The Headhunter and ICB components together are responsible for allowing a

seamless integration of different component models and sustaining (managed)

cooperation among heterogeneous components.

6.1.2 Discovery Mechanism

It is essential that Discovery Services effectively manage the bandwidth usage. It

is easy to saturate the network if the services implement protocols, which do not consider

bandwidth as a critical issue (e.g., “if services and clients discover each other by

multicast/broadcast once per second”). Protocols that are based on a purely advertisement

or purely request strategy may use a great deal of bandwidth [GUT99]. If all services

keep advertising their availability periodically and if clients keep sending service requests

to all possible services, the network will saturate with advertisements and requests, and

may also overload service providers. It is, therefore, imperative that multicast be used

carefully and the number of messages exchanged be limited.

125

The fundamental difference between other Service Discovery Protocols and

URDS is that, in the URDS architecture, the Clients and Services are not ‘active’ i.e.,

they do not directly participate in the multicast communications of the discovery process.

It is the native registries that have a handle to the services that participate in the discovery

process and not the services themselves. The advantage of this approach is two fold:

1. network usage is reduced as the Services and Clients are not participating in

active discovery, which cuts down on the multicast messages periodically being

broadcast/multicast by Services, Clients, and Lookup Services wanting to be

discovered by each other.

2. service providers do not need to add additional functionality to their components

to make them ‘active’ i.e., communication-aware. The components can be

constructed in any desired component model and still be discovered in the URDS

environment.

The URDS architecture of combining a Directory Service with a Discovery

service, presents another unique advantage in reducing communication overhead. The

ICB acts as the directory for brokering client requests. Clients contact the ICB with their

service requests, and the ICB responds with a list of services matching the service

requests. This avoids the situation of the client being swamped with responses from

arbitrary services. URDS also supports Federation of the ICBs, which further helps to

localize traffic and reduce the number of parties involved. The idea of Federation or

Hierarchical organizations is common in Directory Services, and this can prove very

efficient when combined with a Discovery service.

6.1.3 Service Description

Every resource discovery protocol specifies its own standards for describing

services. The Object Management Group (OMG) specifies the standard Interface

Definition Language (IDL) for defining service contracts. W3C has focused on standards

126

for exchanging information using the Internet infrastructure (HTML, XML, HTTP, XSL).

URDS aims to discover and achieve interoperability in an open, dynamic network

environment where the communicating parties (clients and services) are implemented in

diverse architectures each conforming to their own standards of service description. It

was realized that it would not be possible to implement a meta-protocol of service types.

The solution adopted in URDS is to allow the components to follow their own standards

for service description but also provide a UniFrame specification in XML outlining the

computational, functional, co-operational, auxiliary attributes and QoS metrics. Since,

XML is designed to support an automatic translation and transformation between XML

languages, it is well suited for providing interoperability between diverse services. The

UniFrame Approach also provides capabilities for auto-generating the XML based

UniFrame specifications from the natural language specification of the component.

6.1.4 Client Query and Matchmaking

In URDS, the users (clients) present a query to the system in natural language-like

style. This query is passed through a natural language query processor, which extracts the

key words, constraints, and preferences (see Chapter 4) from the query and constructs a

structured query language statement. The matchmaking is achieved by comparing the

structured query language statement against the repository of service information. This

method of query and matchmaking allows a user a large degree of flexibility in

formatting queries, which is not found in any of the other discovery or directory services.

The JINI searching mechanism uses the Java serialized object-matching mechanism,

which is based on exact matching of serialized objects, making it prone to false negatives

due to class versioning problems [CZE99]. The SSDS searching mechanism is based on

XML tag matching while SLP is based on matching of service types all of which require

the client’s query to adhere to a standard format in order to obtain a match.

127

6.1.5 Domain of Discovery

The discovery protocol of the URDS architecture is “administratively scoped”,

i.e., it locates services within an administratively defined logical domain. Domain in the

UniFrame Approach refers to industry specific markets such as Financial Services,

Health Care Services, Manufacturing Services. In URDS, the Headhunters and Active-

Registries are associated with specific domains and they register and detect services

developed for the specific industrial sector with which they are associated. This kind of

logical partitioning also allows for a contextualization of the search space. Other

discovery protocols too have the notion of “administrative scope” but the difference in

their case is that scope is associated with the topology of the network domain. The

resources detected in these cases are those that are logically located ‘nearby’ within the

network topology.

6.1.6 Security

Most Directory Services do not have a built-in security framework. Security is not

as essential in these cases because of the centralized management schemes. Discovery

protocols however need to address this issue because of their decentralized nature.

Discovery protocols are faced with the challenge of providing a robust, yet lightweight,

and automatic security protocol that does not consume network resources.

The UniFrame architecture addresses a majority of the security threats faced in

the scenario of a discovery process. The security model provides for authentication of the

principals involved (Headhunters and native registries) through a userid-password based

authentication scheme. URDS uses access control lists to restrict access to multicast

address resources. URDS also ensures the security of the multicast data transmitted

through the use of a secret-key based data encryption scheme. The model does not at this

stage provide for elaborate protocols for establishing keys and passwords. It uses a

128

centralized controller (the Domain Security Manager), which is responsible for

authenticating the principals and distributing the secret-keys.

The Ninja: SSDS, outlined in Chapter 2, is a good example as it uses several

different security protocols and services. SSDS uses Certificates and a Certificate

Authority structure to authenticate all principals. The authenticity of the discovery service

is maintained through Public Key authenticated SDS server announcements. Privacy and

authenticity of service descriptions are ensured through one-way encrypted service

announcements (combined public and private key protocol). SSDS uses Secure RMI for a

two-way authenticated and encrypted remote method invocation.

 The other protocols like JINI and SLP have support for authentication, but no

provisions for encryption.

6.1.7 Quality of Service

A unique feature of URDS is the incorporation of the notion of QoS as applied to

software components. Although QoS parameters and associated metrics have been widely

used in networking, there is no standard vocabulary for discussing QoS as it relates to

distributed computing and component based solutions. The UniFrame research aims at

outlining an approach to a QoS-based framework for creating distributed heterogeneous

software components [RAJ01]. This work leverages work by Zinky, Bakken & Schantz

[ZIN95] with the goal of providing a catalog of QoS parameters, indicating how

parameters might be described, and providing a list and brief description of the QoS

parameters being cataloged along with a detailed sample description. The discovery

services of the UniFrame integrate this notion of QoS into the specification of services

and the matchmaking process. The UniFrame specification of a component indicates the

various QoS metrics supported by a component and the clients issue requests for

components possessing desired levels of QoS. The matchmaking process then uses the

129

QoS metrics as an additional level of filtration to return the appropriate match to the

client.

6.2 Future Work

This thesis proposed an architecture for discovering services developed in

different component models. The proposed architecture was validated through a

prototype. The prototype implements the following features of the URDS architecture: i)

Dynamic Discovery of components, which are developed using the Java-RMI, distributed

computing model, ii) Servicing Component Assembler’s requests presented in natural

language-like style, and iii) Security features outlined in the URDS architecture.

Future extensions to this research involve more comprehensive and complete

implementation and a more rigorous validation of the features proposed in the URDS

architecture, which are not currently implemented in the prototype. This is outlined in

Section 6.2.1. Section 6.2.2 outlines research possibilities to extend the URDS

architecture.

6.2.1 Extensions to the Prototype Implementation

 Many extensions are possible of the current prototype. A few of these are:

• Discovery of components developed using other distributed computing models

such as CORBA, Voyager, etc., by extending the native registries of the

respective models in accordance with algorithms outlined in Section 4.8.1 of

Chapter 4.

130

• A support for Federation of ICBs by providing for an implementation of the Link

Manager Service in accordance with the algorithms outlined in Section 4.4.1 of

Chapter 4.

• A support for Adapter Component Services. This will require further research in

the area of developing adapter components by using glue and wrapper technology.

The URDS architecture provides the Adapter Manager Service (refer Algorithms

outlined in Section 4.5.1) for the discovery of these adapter components.

• A support for the failure detection capabilities in the Headhunter outlined in

algorithm 4.6.1.6 of Chapter 4.

• The performance of the prototype can be optimized by fine tuning various

parameters such as the time between periodic multicast announcements by the

Headhunter, the time period between successive purge cycles to maintain the

‘freshness’ of the information returned as a result of a search, and the number of

Headhunters present in the system per domain, etc.

• The performance of the prototype from an implementation perspective can be

enhanced using alternative technologies for implementation. Section 5.5 in

Chapter 5 outlines implementation strategies for enhancing the prototype.

• Testing the scalability and incorporating the feedback.

6.2.2. Enhancements of the URDS Architecture

Possible areas for enhancement of the current architecture are:

131

• ‘Intelligent’ Search Process: The search propagation process in URDS can be

made ‘intelligent’ i.e., the search process can use decision making capabilities to

restrict the search space and perform more ‘selective’ searches. The URDS

architecture proposed the use of query propagation policies, search scoping

policies and function scoping policies to restrict the search space (See Section 4.3

of Chapter 4). The process can be further improved if the search process utilizes

heuristics such as: a) past history and statistical results, and b) notion of

acquaintances to narrow the search space. The QM can use heuristics to propagate

a search to Headhunters and Link Managers. The QM can base the decision to

propagate a query on parameters such as past history of availability, response

time, number and quality of search results obtained from a Headhunter/Link

Manager.

• Mobile Headhunters: The Headhunters in the current implementation use the

network communication to gather information from the Active Registries. A

possible enhancement could be to make the Headhunters ‘mobile’ i.e., the

Headhunters move to the machines hosting the registries to gather information

from the registries. The performance advantage of such an approach over the

current approach needs to be carefully weighed out as it raises several security

concerns.

• Usages of alternative schemes for techniques such as Security to create domain-

specific (and restricted) versions of URDS are other directions of enhancement.

6.3 Summation

The thesis has presented an architecture and an implementation for the part of an

infrastructure facilitating a semi-automatic construction of a distributed system that

provides for the dynamic discovery of heterogeneous components and selection of

132

components meeting the necessary requirements, including desired levels of QoS. The

URDS architecture addresses essential design issues such as interoperability, QoS of

software components, scalability, fault tolerance, security and network usage. These

issues, considered in the design of URDS, make it unique as compared to other existing

approaches. Interoperability is achieved by discovering components developed in several

different component models. The discovery mechanism uses multicasting to detect native

registries/lookup services of various component models that are extended to possess

‘active' and ‘introspective’ capabilities. The specifications capture the computational,

functional, co-operational, auxiliary attributes and QoS metrics of their registered

components. Flexibility in query formatting is achieved by providing support for natural

language-like client requests. URDS is organized in a federated hierarchical structure as a

scalability mechanism. Failure tolerance is handled through periodic announcements by

failure prone entities and through information caching. Security is provided through

authentication of the principals involved, access control to multicast address resources,

and encryption of data transmitted. The URDS architecture coupled with the UA presents

a promising solution for creating DCS by integrating geographically scattered,

heterogeneous software components.

133

APPENDIX

Source Code

umm.entity.beans.AuthenticatedPacket
package umm.entity.beans;

import java.io.*;
import javax.crypto.*;
import java.security.*;

/**
 * The AuthenticatedPacket encapsulates the multicast address and
 * secret-key returned to the principals (Headhunters/ActiveRegistries) by the Domain
 * Security Manager.
 * Creation date: (03/01/2002 6:19:08 PM)
 * @author: Nanditha Nayani Siram
 */
public class AuthenticatedPacket implements Serializable {
 private SecretKey secretkey = null;
 private String mcastaddress = null;

/**
 * The AuthenticatedPacket Constructor
 */
public AuthenticatedPacket(SecretKey key, String address) {
 secretkey = key;
 mcastaddress = address;
}

/**
 * Returns Secret-Key
 */
public SecretKey getKey() {
 return secretkey;
}

/**
 * Returns Multicast Address
 */
public String getMCAddress() {
 return mcastaddress;
}

/**
 * Set Multicast Address
 */
public void setMCAddress(String address) {
 mcastaddress = address;
}

/**

134

 * set Secret-Key
 */
public void setKey(SecretKey key) {
 secretkey = key;
}
}

umm.entity.beans.ComponentBean
package umm.entity.beans;
import umm.helper.dataaccess.*;

import java.util.*;
import java.sql.*;
import java.io.*;

/**
 * The attributes of the ComponentBean class mirror the
 * fields of the table Component. The ComponentBean
 * internally holds a list of FunctionBean objects.
 * The ComponentBean has functionality built in to
 * persist it to a database.
 * Creation date: (11/14/2001 5:09:08 PM)
 * @author: Nanditha Nayani Siram
 */
public class ComponentBean implements Serializable
{
 private java.lang.String id = "";
 private java.lang.String name = "";
 private java.lang.String description = "";
 private java.lang.String function = "";
 private java.lang.String algorithm = "";
 private java.lang.String complexity = "";
 private java.lang.String technology = "";
 private java.lang.String preprocessingCollaborators = "";
 private double end2endDelay = 0;
 private double availability = 0;
 private java.lang.String mobility = "No";
 private java.util.Vector functionBeanList = new Vector();
 private java.lang.String status = "Active";
 private java.lang.String domain = "";

/**
 * ComponentBean constructor comment.
 */
public ComponentBean() {
 super();
}

/**
 * Add the function beans to list.
 */
public void addFunctionBeans(FunctionBean functionBean) {
 functionBeanList.addElement(functionBean);
}

/**
 * Populate attributes of bean from ResultSet.
 */
public void buildBean(ResultSet resultSet) throws java.lang.Exception {

 id = resultSet.getString("id");
 name = resultSet.getString("name");
 description = resultSet.getString("description");
 domain = resultSet.getString("domain");
 function = resultSet.getString("function");
 algorithm = resultSet.getString("algorithm");
 complexity = resultSet.getString("complexity");
 technology = resultSet.getString("technology");

135

 preprocessingCollaborators = resultSet.getString("collaborators");
 end2endDelay = resultSet.getDouble("end2endDelay");
 availability = resultSet.getDouble("availability");
 mobility = resultSet.getString("mobility");

}
/**
 * Return Algorithm
 */
public java.lang.String getAlgorithm() {
 return algorithm;
}
/**
 * Return availability
 */
public double getAvailability() {
 return availability;
}
/**
 * Return complexity
 */
public java.lang.String getComplexity() {
 return complexity;
}
/**
 * Return description
 */
public java.lang.String getDescription() {
 return description;
}
/**
 * Return domain
 */
public java.lang.String getDomain() {
 return domain;
}
/**
 * Return end2endDelay
 */
public double getEnd2endDelay() {
 return end2endDelay;
}
/**
 * Return function
 */
public java.lang.String getFunction() {
 return function;
}
/**
 * Return functionBeanList
 */
public java.util.Vector getFunctionBeanList() {
 return functionBeanList;
}
/**
 * Return id
 */
public java.lang.String getId() {
 return id;
}
/**
 * Return mobility
 */
public java.lang.String getMobility() {
 return mobility;
}
/**
 * Return name
 */

136

public java.lang.String getName() {
 return name;
}
/**
 * Return preprocessingCollaborators
 */
public java.lang.String getPreprocessingCollaborators() {
 return preprocessingCollaborators;
}
/**
 * Return status
 */
public java.lang.String getStatus() {
 return status;
}
/**
 * Return technology
 */
public java.lang.String getTechnology() {
 return technology;
}
/**
 * Set algorithm
 */
public void setAlgorithm(java.lang.String newAlgorithm) {
 algorithm = newAlgorithm;
}
/**
 * Set availability
 */
public void setAvailability(double newAvailability) {
 availability = newAvailability;
}
/**
 * Set complexity
 */
public void setComplexity(java.lang.String newComplexity) {
 complexity = newComplexity;
}
/**
 * Set description
 */
public void setDescription(java.lang.String newDescription) {
 description = newDescription;
}
/**
 * Set domain
 */
public void setDomain(java.lang.String newDomain) {
 domain = newDomain;
}
/**
 * Set end2endDelay
 */
 public void setEnd2endDelay(double newEnd2endDelay) {
 end2endDelay = newEnd2endDelay;
}
/**
 * Set function
 */
 public void setFunction(java.lang.String newFunction) {
 function = newFunction;
}
/**
 * Return functionBeanList
 */
public void setFunctionBeanList(java.util.Vector newFunctionBeanList) {
 functionBeanList = newFunctionBeanList;
}

137

/**
 * Set id
 */
public void setId(java.lang.String newId) {
 id = newId;
}
/**
 * Set mobility
 */
public void setMobility(java.lang.String newMobility) {
 mobility = newMobility;
}
/**
 * Set name
 */
public void setName(java.lang.String newName) {
 name = newName;
}
/**
 * Set preprocessingCollaborators
 */
public void setPreprocessingCollaborators(java.lang.String newPreprocessingCollaborators)
{
 preprocessingCollaborators = newPreprocessingCollaborators;
}
/**
 * Set status
 */
public void setStatus(java.lang.String newStatus) {
 status = newStatus;
}
/**
 * Set technology
 */
public void setTechnology(java.lang.String newTechnology) {
 technology = newTechnology;
}

/**
 * Persist Bean values to database.
 */
public void persistBean(SQLHelper sqlHelper) throws java.lang.Exception {

 String componentUpdateString =
 "INSERT INTO COMPONENT VALUES(" +
 "'" + id + "'," +
 "'" + name + "'," +
 "'" + description + "'," +
 "'" + function + "'," +
 "'" + algorithm + "'," +
 "'" + complexity + "'," +
 "'" + domain + "'," +
 "'" + technology + "'," +
 "'" + preprocessingCollaborators + "'," +
 end2endDelay + "," +
 availability + "," +
 "'" + mobility + "'" +
 ")";

 sqlHelper.updateTable(componentUpdateString);

 for(int i=0;i<functionBeanList.size();i++)
 {
 FunctionBean functionBean = (FunctionBean) functionBeanList.get(i);
 functionBean.persistBean(sqlHelper);
 }

}
}//End of ComponentBean

138

umm.entity.beans.FunctionBean
package umm.entity.beans;
import umm.helper.dataaccess.*;

import java.util.*;
import java.io.*;

/**
 * The attributes of the FunctionBean mirror the fields
 * of the table Function. The FunctionBean has
 * functionality built in to persist it to a database.
 * Creation date: (11/15/2001 11:50:10 AM)
 * @author: Nanditha Nayani Siram
 */

public class FunctionBean implements Serializable{

 private java.lang.String functionName = "";
 private java.lang.String syntacticContract = "";
 private java.lang.String id = "";

/**
 * FunctionBean constructor comment.
 */
public FunctionBean() {
 super();
}
/**
 * Construct Bean from ResultSet.
 */
public void buildBean(java.sql.ResultSet resultSet) throws java.lang.Exception {

 id = resultSet.getString("id");
 functionName = resultSet.getString("function_name");
 syntacticContract = resultSet.getString("syntactic_contract");
}
/**
 * Return Function Name
 */
public java.lang.String getFunctionName() {
 return functionName;
}
/**
 * Return Sytactic Contract
 */
public java.lang.String getSyntacticContract() {
 return syntacticContract;
}
/**
 * Set Function Name
 */
public void setFunctionName(java.lang.String newFunctionName) {
 functionName = newFunctionName;
}
/**
 * Set Syntactic Contract
 */
public void setSyntacticContract(java.lang.String newSyntacticContract) {
 syntacticContract = newSyntacticContract;
}

/**
 * Return ID
 */
public java.lang.String getId() {
 return id;

139

}

/**
 * Set ID
 */
public void setId(java.lang.String newId) {
 id = newId;
}
/**
 * Persist Bean onto DB.
 */
public void persistBean(SQLHelper sqlHelper) throws Exception {

 String functionUpdateString =
 "INSERT INTO FUNCTION VALUES(" +
 "'" + id + "'," +
 "'" + functionName + "'," +
 "'" + syntacticContract + "')";

 sqlHelper.updateTable(functionUpdateString);
}
}//end of FunctionBean

umm.entity.beans.QueryBean
package umm.entity.beans;

import java.util.*;
import java.io.*;

/**
 * The QueryBean encapsulates the attributes of a Query
 * received from the client. The bean also has the logic
 * associated with generating a SQL query based on the
 * attributes it holds.
 * Creation date: (11/15/2001 1:15:26 PM)
 * @author: Nanditha Nayani Siram
 */

public class QueryBean implements Serializable{
 private java.lang.String domain = "";
 private java.lang.String componentName = "";
 private java.lang.String componentDescription = "";
 private java.lang.String functionNames = "";
 private java.lang.String algorithms = "";
 private java.lang.String complexity = "";
 private java.lang.String technology = "";

 private java.lang.String availabilityConstraint = "";
 private boolean availabilityFlag = false;
 private double availabilityValue = 0;

 private boolean end2endDelayFlag = false;
 private java.lang.String end2endDelayConstraint = "";
 private double end2endDelayValue = 0;
 private java.lang.String mobility = "No";
 private int numOffers = 0;
 private int numMetrics = 0;
 private int hopcount;
 private java.lang.String requestID;

/**
 * QueryBean constructor comment.
 */
public QueryBean() {
 super();
}
/**
 * Returns algorithms Query
 */

140

public String getAlgorithmQuery() {

 String[] stringTokens = tokeniseString(algorithms);
 StringBuffer queryBuilder = new StringBuffer();
 queryBuilder.append(" (");

 for(int i =0;i<stringTokens.length;i++)
 {

 String searchQuery =
 "("+
 " UPPER(ALGORITHM) LIKE '%" + stringTokens[i].toUpperCase()
+"%' " +
 ")";

 queryBuilder.append(searchQuery);

 if((i+1)<stringTokens.length)
 queryBuilder.append(" OR ");
 }

 queryBuilder.append(") ");
 return queryBuilder.toString();
}
/**
 * Return availability query.
 */
public String getAvailabilityQuery() {
 String availabilityQuery = null;

 if((availabilityConstraint != null) &&
!(availabilityConstraint.equalsIgnoreCase("None")))
 {
 availabilityQuery =
 "(" +
 " AVAILABILITY " + availabilityConstraint + " " +
availabilityValue +
 ")";

 }
 else
 {
 availabilityQuery =
 "(" +
 " AVAILABILITY > 0" +
 ")";
 }

 return availabilityQuery;
}
/**
 * Return complexity query.
 */
public String getComplexityQuery() {

 String[] stringTokens = tokeniseString(complexity);
 StringBuffer queryBuilder = new StringBuffer();
 queryBuilder.append(" (");

 for(int i =0;i<stringTokens.length;i++)
 {

 String searchQuery =
 "("+
 " UPPER(COMPLEXITY) LIKE '%" +
stringTokens[i].toUpperCase() +"%' " +
 ")";

 queryBuilder.append(searchQuery);

141

 if((i+1)<stringTokens.length)
 queryBuilder.append(" OR ");
 }

 queryBuilder.append(") ");
 return queryBuilder.toString();
}
/**
 * Return component description query.
 */
public String getComponentDescriptionQuery() {

 String[] stringTokens = tokeniseString(componentDescription);
 StringBuffer queryBuilder = new StringBuffer();
 queryBuilder.append(" (");

 for(int i =0;i<stringTokens.length;i++)
 {

 String searchQuery =
 "("+
 " UPPER(DESCRIPTION) LIKE '%" +
stringTokens[i].toUpperCase() +"%' " +
 ")";

 queryBuilder.append(searchQuery);

 if((i+1)<stringTokens.length)
 queryBuilder.append(" OR ");
 }

 queryBuilder.append(") ");
 return queryBuilder.toString();
}
/**
 * Return component name query.
 */
public String getComponentNameQuery() {

 String[] stringTokens = tokeniseString(componentName);
 StringBuffer queryBuilder = new StringBuffer();
 queryBuilder.append(" (");

 for(int i =0;i<stringTokens.length;i++)
 {

 String searchQuery =
 "("+
 " UPPER(NAME) LIKE '%" + stringTokens[i].toUpperCase() +"%'
" +
 ")";

 queryBuilder.append(searchQuery);

 if((i+1)<stringTokens.length)
 queryBuilder.append(" OR ");
 }

 queryBuilder.append(") ");
 return queryBuilder.toString();
}
/**
 * Return Domain Query.
 */
public String getDomain() {
 return domain;
}

142

/**
 * Return End2EndDelay Query.
 */
public String getEnd2EndDelayQuery() {

 String end2endDelayQuery = null;

 if((end2endDelayConstraint != null) &&
!(end2endDelayConstraint.equalsIgnoreCase("None")))
 {
 end2endDelayQuery =
 "(" +
 " END2ENDDELAY " + end2endDelayConstraint + " " + end2endDelayValue +
 ")";
 }
 else
 {
 end2endDelayQuery =
 "(" +
 " END2ENDDELAY > 0" +
 ")";
 }

 return end2endDelayQuery;
}
/**
 * Return Function names Query.
 */
public String getFunctionNamesQuery() {

 String[] stringTokens = tokeniseString(functionNames);
 StringBuffer queryBuilder = new StringBuffer();

 queryBuilder.append(" (");
 for(int i =0;i<stringTokens.length;i++)
 {

 String searchQuery =
 "("+
 " UPPER(function_name) LIKE '%" +
stringTokens[i].toUpperCase() +"%' " +
 " OR " +
 " UPPER(syntactic_contract) LIKE '%" +
stringTokens[i].toUpperCase() + "%' " +
 ")";

 queryBuilder.append(searchQuery);

 if((i+1)<stringTokens.length)
 queryBuilder.append(" OR ");
 }

 queryBuilder.append(") ");

 return queryBuilder.toString();
}
/**
 * Return Mobility Query.
 */
public String getMobilityQuery() {

 String mobilityQuery =
 "(" +
 " UPPER(MOBILITY) LIKE '%" + mobility.toUpperCase() + "%' "+
 ")";

 return mobilityQuery;
}

143

/**
 * Return Technology Query.
 */
public String getTechnologyQuery() {
 String technologyQuery =
 "(" +
 " UPPER(technology) LIKE '%" + technology.toUpperCase() + "%' "+
 ")";

 return technologyQuery;
}

/**
 * Return Hop Count.
 */
public int getHopcount() {
 return hopcount;
}

/**
 * Return requestID
 */
public java.lang.String getRequestID() {
 return requestID;
}

/**
 * Set Algorithms.
 */
public void setAlgorithms(java.lang.String newAlgorithms) {
 algorithms = newAlgorithms;
}
/**
 * Set availability Constraint.
 */
public void setAvailabilityConstraint(java.lang.String newAvailabilityConstraint) {
 availabilityConstraint = newAvailabilityConstraint;
}
/**
 * Set Availability Flag.
 */
public void setAvailabilityFlag(boolean newAvailabilityFlag) {
 availabilityFlag = newAvailabilityFlag;
}
/**
 * Set Avaliability Value.
 */
public void setAvailabilityValue(double newAvailabilityValue) {
 availabilityValue = newAvailabilityValue;
}
/**
 * Set Complexity.
 */
public void setComplexity(java.lang.String newComplexity) {
 complexity = newComplexity;
}
/**
 * Set Component Description.
 */
public void setComponentDescription(java.lang.String newComponentDescription) {
 componentDescription = newComponentDescription;
}
/**
 * Set Component Name.
 */
public void setComponentName(java.lang.String newComponentName) {
 componentName = newComponentName;
}
/**

144

 * Set Domain.
 */
public void setDomain(java.lang.String newDomain) {
 domain = newDomain;
}
/**
 * Set end2endDelayConstraint.
 */
public void setEnd2endDelayConstraint(java.lang.String newEnd2endDelayConstraint) {
 end2endDelayConstraint = newEnd2endDelayConstraint;
}
/**
 * Set end2EndDelayFlag.
 */
public void setEnd2endDelayFlag(boolean newEnd2endDelayFlag) {
 end2endDelayFlag = newEnd2endDelayFlag;
}
/**
 * Set end2endDelayValue.
 */
public void setEnd2endDelayValue(double newEnd2endDelayValue) {
 end2endDelayValue = newEnd2endDelayValue;
}
/**
 * Set function names.
 */
public void setFunctionNames(java.lang.String newFunctionNames) {
 functionNames = newFunctionNames;
}
/**
 * Set mobility.
 */
public void setMobility(java.lang.String newMobility) {
 mobility = newMobility;
}
/**
 * Set numMetrics.
 */
public void setNumMetrics(int newNumMetrics) {
 numMetrics = newNumMetrics;
}
/**
 * Set numOffers.
 */
public void setNumOffers(int newNumOffers) {
 numOffers = newNumOffers;
}
/**
 * Set Technology
 */
public void setTechnology(java.lang.String newTechnology) {
 technology = newTechnology;
}

/**
 * Set hopCount
 */
public void setHopcount(int newHopcount) {
 hopcount = newHopcount;
}
/**
 * Set requestID
 */
public void setRequestID(java.lang.String newRequestID) {
 requestID = newRequestID;
}

/**
 * Tokenize keywords.

145

 */
public String[] tokeniseString(String keyWords) {

 String[] stringTokens = null;

 if (keyWords != null) {
 StringTokenizer strTok = new StringTokenizer(keyWords);
 int numTokens = strTok.countTokens();
 stringTokens = new String[numTokens];
 int i = 0;
 while (strTok.hasMoreTokens()) {
 stringTokens[i] = strTok.nextToken();
 i++;
 }
 }

 return stringTokens;

}
/**
 * Return resultant composed query.
 */
public String getQuery() {

 String componentTable = "COMPONENT A";
 String functionTable = "FUNCTION B";

 String baseQuery = "SELECT * FROM " + componentTable + ", " +
 functionTable +" WHERE (A.ID = B.ID)";

 String bodyQuery = "";

 if ((componentName !=null) && (!componentName.equals(""))) {
 bodyQuery = bodyQuery + " AND " + getComponentNameQuery();

 }
 if ((componentDescription !=null) && (!componentDescription.equals(""))) {
 bodyQuery = bodyQuery + " AND " + getComponentDescriptionQuery();
 }
 if ((functionNames !=null) && (!functionNames.equals(""))) {
 bodyQuery = bodyQuery + " AND " + getFunctionNamesQuery();
 }

 if ((algorithms !=null) && (!algorithms.equals(""))) {
 bodyQuery = bodyQuery + " AND " + getAlgorithmQuery();
 }

 if ((complexity !=null) && (!complexity.equals(""))) {
 bodyQuery = bodyQuery + " AND " + getComplexityQuery();
 }

 if ((technology !=null) && (!technology.equals(""))) {
 bodyQuery = bodyQuery + " AND " + getTechnologyQuery();
 }

 if (availabilityFlag) {
 bodyQuery = bodyQuery + " AND " + getAvailabilityQuery();
 }

 if (end2endDelayFlag) {
 bodyQuery = bodyQuery + " AND " + getEnd2EndDelayQuery();
 }

 if ((mobility !=null) && (!mobility.equalsIgnoreCase("No"))) {
 bodyQuery = bodyQuery + " AND " + getMobilityQuery();
 }

 String query = baseQuery + bodyQuery;
 return query;

146

}

}//end QueryBean

umm.helper.dataaccess.DSMRepositoryHelper
package umm.helper.dataaccess;

import java.sql.*;
import java.util.*;

/**
 * This class performs functions associated with
 * accessing the DSM_Repository to retrieve
 * user-domain mappings and for user authentication.
 * Creation date: (11/15/2001 1:15:26 PM)
 * @author: Nanditha Nayani Siram
 */

public class DSMRepositoryHelper {

private static SQLHelper sqlHelper = null;

/**
 * Initialize SQLHelper
 */
public static void initialize() {
 try {
 sqlHelper = new SQLHelper();

 } catch (Exception e) {
 System.out.println(e);
 }

}

/**
 * authenticate principal against DB.
 */
public static boolean authenticateUser(
 String sUserType,
 String sUserName,
 String sPassword) {
 boolean isAuthenticated = false;

 try {
 String sUserQuery =
 "SELECT UserName From Users "
 + "WHERE ((Users.UserName = '"
 + sUserName
 + "') AND (Users.Password = '"
 + sPassword
 + "') AND (Users.UserType = '"
 + sUserType
 + "'))";

 // execute the Query
 ResultSet resultSet = sqlHelper.executeQuery(sUserQuery);

 if (!resultSet.next()) {
 // the database has no results - therefore the user is not
authenticated
 return false;
 }

 // retrieve the resultset
 String sResult = resultSet.getString(1);

 // if the username is returned,

147

 if (sResult != null) {
 // the user has been successfully authenticated
 isAuthenticated = sUserName.equals(sResult);
 }

 } catch (SQLException sqlE) {
 sqlE.printStackTrace();
 return false;
 } catch (Exception e) {
 e.printStackTrace();
 return false;
 }

 return isAuthenticated;
}

/**
 * Build hashtable from resultset.
 */
private static Hashtable getFeaturesFromResultSet(ResultSet resultSet)
 throws SQLException {

 Hashtable hFeatures = new Hashtable();

 String sFeatureName = null;
 String sFeatureValue = null;

 while (resultSet.next()) {
 sFeatureName = resultSet.getString(1);
 sFeatureValue = resultSet.getString(2);
 hFeatures.put(sFeatureName, sFeatureValue);
 }

 return hFeatures;
}

/**
 * Load from DomainList and Permissions tables.
 */
public static Hashtable loadDomainList() {
 Hashtable hFeatures = null;

 String sDomainListQuery =
 "SELECT DomainList.DomainAddress, Permissions.PermissionName From
DomainList, Permissions "
 + " WHERE (DomainList.DomainID = Permissions.PermissionID)";

 try {
 // execute the Query
 ResultSet resultSet = sqlHelper.executeQuery(sDomainListQuery);
 hFeatures = getFeaturesFromResultSet(resultSet);

 } catch (SQLException sqlE) {
 sqlE.printStackTrace();
 return null;
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }

 return hFeatures;
}

/**
 * Load from Users and Permissions.
 */
public static Hashtable loadUserDomainMapping() {
 Hashtable hFeatures = null;

148

 String sUserDomainQuery =
 "SELECT Users.UserName, Permissions.PermissionName "
 + "FROM Users, Permissions, User_Permission_Xref "
 + " WHERE ("
 + "(User_Permission_Xref.PermissionID = Permissions.PermissionID)
AND "
 + "(User_Permission_Xref.UserID = Users.UserID))";

 try {
 // execute the Query
 ResultSet resultSet = sqlHelper.executeQuery(sUserDomainQuery);
 hFeatures = getFeaturesFromResultSet(resultSet);

 } catch (SQLException sqlE) {
 sqlE.printStackTrace();
 return null;
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }

 return hFeatures;
}

/**
 * Load from Permissions table.
 */
public static ArrayList getListOfDomains() {

 String sListofDomainsQuery = "SELECT PermissionName From Permissions";

 try {
 // execute the Query
 ResultSet resultSet = sqlHelper.executeQuery(sListofDomainsQuery);
 // position to first record
 boolean moreRecords = resultSet.next();
 // If there are no records, display a message
 if (!moreRecords) {
 return null;
 } else {
 ArrayList listOfDomains = new ArrayList();
 do {
 String domain = resultSet.getString("PermissionName");
 listOfDomains.add(domain);
 } while (resultSet.next());
 return listOfDomains;
 } //end else

 } catch (SQLException sqlE) {
 sqlE.printStackTrace();
 return null;
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }
}
}//end of DSMRepositoryHelper

umm.helper.dataaccess.MetaRepositoryHelper
package umm.helper.dataaccess;

import umm.entity.beans.*;

import java.sql.*;
import java.util.*;

/**
 * This class performs functions associated with accessing
 * the Meta_Repository to retrieve search results.

149

 * Creation date: (11/15/2001 1:15:26 PM)
 * @author: Nanditha Nayani Siram
 */
public class MetaRepositoryHelper {

private java.util.Hashtable resultTable;
private QueryBean queryBean;

/**
 * Constructor 1
 */
public MetaRepositoryHelper() {
 super();
}

/**
 * Constructor 2
 */
public MetaRepositoryHelper(QueryBean newQueryBean) {
 queryBean = newQueryBean;
}

/**
 * Excecute Query against MR and return search results.
 */
public Hashtable getSearchResultTable() throws java.lang.Exception {

 SQLHelper sqlHelper = new SQLHelper();

 String searchQuery = queryBean.getQuery();

 if (searchQuery == null || searchQuery.equals(""))
 throw new Exception("No Parameters Passed For Search");

 ResultSet resultSet = sqlHelper.executeQuery(searchQuery);

 // position to first record
 boolean moreRecords = resultSet.next();
 // If there are no records, display a message
 if (!moreRecords) {
 sqlHelper.shutDown();
 throw new Exception("No Records Matching Search Criteria");
 } else {
 resultTable = new Hashtable();

 ComponentBean componentBean = null;

 // get row data
 do {

 String ID = resultSet.getString("id");

 if (!resultTable.isEmpty() && resultTable.containsKey(ID)) {
 componentBean = (ComponentBean) resultTable.get(ID);
 FunctionBean functionBean = new FunctionBean();
 functionBean.buildBean(resultSet);
 componentBean.addFunctionBeans(functionBean);

 } else {

 componentBean = new ComponentBean();

 componentBean.buildBean(resultSet);

 FunctionBean functionBean = new FunctionBean();
 functionBean.buildBean(resultSet);

 componentBean.addFunctionBeans(functionBean);

150

 resultTable.put(ID, componentBean);

 }

 } while (resultSet.next());

 } //end of else

 sqlHelper.shutDown();

 return resultTable;
}
}//end of MRHelper

umm.helper.dataaccess.SQLHelper
package umm.helper.dataaccess;

import java.util.*;
import java.sql.*;

/**
 * This is the class which serves as a connection to the
 * oracle database. It establises the database connection
 * and executes queries which either select/update the
 * tables of the database as well as execute stored
 * procedures.
 * Creation date: (9/14/2001 12:57:07 PM)
 * @author: Nanditha Nayani Siram
 */
public class SQLHelper {
 private java.sql.Connection dbconn = null;
 private java.sql.Statement statement = null;

/**
 * Constructor
 */
public SQLHelper() throws java.lang.Exception {

 //---
 // Get Connection to database.
 // The URL specifying the database to which
 // this program connects using JDBC
 //---

 String url = "jdbc:oracle:thin:@phoenix.cs.iupui.edu:1521:OS80";

 String username = "nnayani";
 String password = "nnayani";

 // Load the driver to allow connection to the database
 try {
 Class.forName("oracle.jdbc.driver.OracleDriver");

 dbconn = DriverManager.getConnection(url, username, password);

 statement = dbconn.createStatement();

 } catch (ClassNotFoundException cnfex) {

 System.err.println("Failed to load driver.");
 cnfex.printStackTrace();
 System.exit(1); // terminate program

 } catch (SQLException sqlex) {

 System.err.println("\n Unable to connect to Oracle Server");
 sqlex.printStackTrace();
 System.exit(1); // terminate program
 }

151

}

/**
 * Commit Transaction
 */
public final void commitTransaction() throws java.lang.Exception {
 try {
 dbconn.commit();
 } catch (SQLException sqle) {
 throw new Exception(
 "\n SQL Exception during commitTransaction with message :" +
sqle.getMessage());
 }
}

/**
 * Execute a Query
 */
public ResultSet executeQuery(String query) throws java.lang.Exception {

 ResultSet resultSet = null;

 try {
 resultSet = statement.executeQuery(query);
 } catch (SQLException sqle) {
 throw new Exception(
 "\n SQL Exception during executeQuery with message:" +
sqle.getMessage());
 }

 return resultSet;

}

/**
 * Return DB Connection
 */
public java.sql.Connection getDbconn() {
 return dbconn;
}

/**
 * Return Statement
 */
public java.sql.Statement getStatement() {
 return statement;
}
/**
 * Turn off Auto Commit before initiating transaction
 */
public final void initiateTransaction() throws java.lang.Exception {
 try {
 dbconn.setAutoCommit(false);
 } catch (SQLException sqle) {
 throw new Exception(
 "\n SQL Exception during initiateTransaction with message :"
 + sqle.getMessage());
 }
}
/**
 * Perform Rollback
 */
public void rollbackTransaction() throws java.lang.Exception {
 try {
 dbconn.rollback();
 } catch (SQLException sqle) {
 throw new Exception(
 "\n SQL Exception during rollbackTransaction with message :"

152

 + sqle.getMessage());
 }
}
/**
 * Set DB Connection
 */
public void setDbconn(java.sql.Connection newDbconn) {
 dbconn = newDbconn;
}
/**
 * Set Statement
 */
public void setStatement(java.sql.Statement newStatement) {
 statement = newStatement;
}
/**
 * Close connection
 */
public void shutDown() throws java.lang.Exception {

 try {

 if (statement != null)
 statement.close();

 if (dbconn != null)
 dbconn.close();

 } catch (Exception e) {
 throw new Exception(e.getMessage());
 }

}
/**
 * Update DB Table
 */
public void updateTable(String updateString) throws java.lang.Exception {

 try {
 dbconn.setAutoCommit(false);
 statement.executeUpdate(updateString);
 dbconn.commit();
 } catch (SQLException sqle) {
 throw new Exception(
 "\n SQL Exception from function updateTable with message:" +
sqle.getMessage());
 }

}
}

umm.helper.dependent.CreateKey
package umm.helper.dependent;

import javax.crypto.*;
import java.io.*;
import java.security.*;

/**
 * This utility class is used to generate secret-keys.
 * Creation date: (10/14/2001 5:09:08 PM)
 * @author: Nanditha Nayani
 */

public class CreateKey
{
/**
 * Constructor

153

 */
public CreateKey() {
}
/**
 * generate and Return Secret-Key.
 */
public static SecretKey getKey() {
 SecretKey desKey = null;
 try {
 Provider sunJce = new com.sun.crypto.provider.SunJCE();
 Security.addProvider(sunJce);

 KeyGenerator keyGen = KeyGenerator.getInstance("DES");
 desKey = keyGen.generateKey();

 } catch (Exception e) {
 System.out.println(e);
 }
 return desKey;
}
}

umm.helper.dependent.CryptObj
package umm.helper.dependent;

import javax.crypto.*;
import java.security.*;

/**
 * This class provides the utility functions
 * for encrypting and decrypting data.
 * Creation date: (10/14/2001 5:09:08 PM)
 * @author: Nanditha Nayani
 */

public class CryptObj {

 private Cipher encryptCipher = null;
 private Cipher decryptCipher = null;

 /**
 * Constructor
 */
 public CryptObj(SecretKey desKey)
 {

 try
 {
 Provider sunJce = new com.sun.crypto.provider.SunJCE();
 Security.addProvider(sunJce);

 // get cipher object for encryption
 encryptCipher = Cipher.getInstance("DES/ECB/PKCS5Padding");
 encryptCipher.init(Cipher.ENCRYPT_MODE, desKey);

 decryptCipher = Cipher.getInstance("DES/ECB/PKCS5Padding");
 decryptCipher.init(Cipher.DECRYPT_MODE, desKey);
 }
 catch (Exception e)
 {
 System.out.println(e);
 }

 }

 /**
 * Encrypt Object
 */
 public Object enCryptObj(java.io.Serializable inObj)

154

 {
 SealedObject sealObj = null;

 try{

 sealObj = new SealedObject(inObj,encryptCipher);
 }
 catch(Exception e)
 {
 System.out.println(e);
 }
 return sealObj;

 }
 /**
 * Decrypt Object
 */
 public Object deCryptObj(SealedObject inObj)
 {
 Object thisObj = null;

 try{

 thisObj = inObj.getObject(decryptCipher);
 }
 catch(Exception e)
 {
 System.out.println(e);
 }

 return thisObj;

 }
 }//end of CryptObj

umm.helper.dependent. MulticastReceiver
package umm.helper.dependent;

import umm.helper.dependent.*;
import umm.entity.beans.*;
import umm.services.*;

import java.net.*;
import java.io.*;
import java.util.*;
import java.rmi.*;

import java.security.*;
import javax.crypto.*;

/**
 * This class operates on a Thread, which constantly listens
 * for multicast messages on a MulticastSocket and receives
 * the incoming DatagramPackets. This thread utilizes the
 * CryptObject and ObjectSerializer Helper objects to decrypt
 * and reconstruct the multicast messages received.
 * Creation date: (10/15/2001 11:50:10 AM)
 * @author: Nanditha Nayani Siram
 */

public class MulticastReceiver implements Runnable {

 private InetAddress groupAddress = null;
 private MulticastSocket multicastSocket = null;
 private int port = 10000;
 private CryptObj cryptObject = null;
 private javax.crypto.SealedObject encryptedRegistryLocation = null;
 private ObjectSerializer objSerializer = null;
 private java.lang.String registryLocation = null;

155

public void run() {
 try {
 multicastSocket = new MulticastSocket(port);
 multicastSocket.joinGroup(groupAddress);
 System.out.println("\n Active Registry joined multicast group at : " +
groupAddress);

 while (true) {
 byte[] buffer = new byte[1024];
 //Receiving data
 DatagramPacket dataPacket = new DatagramPacket(buffer,
buffer.length);
 multicastSocket.receive(dataPacket);

 //---- Without Encryption -------------
 // String dataString = new String(dataPacket.getData());

 //---- With Encryption --------------

 byte[] encryptedHHLoc = dataPacket.getData();
 objSerializer.setBytes(encryptedHHLoc);
 SealedObject encryptedObject = (SealedObject)
objSerializer.getObject();
 String dataString = (String)
cryptObject.deCryptObj(encryptedObject);
 System.out.println("Active Registry Received Encrypted Multicasted Headhunter
Location : " + dataString);
 try {

 System.setSecurityManager(new RMISecurityManager());
 IHeadhunter hhunter = (IHeadhunter)
Naming.lookup(dataString.trim());

 //Unicast information to headhunter
 hhunter.receiveUnicastCommunication(registryLocation);

 System.out.println("Active Registry Unicast to Headhunter
" +
 dataString + " its Location " + registryLocation);

 } catch (Exception e) {
 System.out.println(e);

 }
 } //end of while

 } catch (IOException ioe) {
 System.out.println(ioe);

 } //end of try-catch
 finally {
 if (multicastSocket != null) {
 try {
 multicastSocket.leaveGroup(groupAddress);
 multicastSocket.close();
 } catch (IOException ioe) {
 System.out.println(ioe);

 } //end of try-catch

 } //end of if
 } //end of finally

} //end of run

//Constructor
public MulticastReceiver(

156

 int mcastPort,
 AuthenticatedPacket authPacket,
 String regLocation) {

 try {
 groupAddress = InetAddress.getByName(authPacket.getMCAddress());
 port = mcastPort;
 cryptObject = new CryptObj(authPacket.getKey());
 objSerializer = new ObjectSerializer();
 registryLocation = regLocation;
 encryptedRegistryLocation = (SealedObject)
cryptObject.enCryptObj(registryLocation);

 } catch (Exception e) {
 System.out.println(e);
 System.exit(1);

 } //end of try-catch

} //end of Receiver
} //end of class MulticastReceiver

umm.helper.dependent. MulticastSender
package umm.helper.dependent;

import umm.helper.dependent.*;
import umm.entity.beans.*;

import java.net.*;
import java.security.*;
import javax.crypto.*;

/**
 * This class operates as a Thread which executes periodically.
 * This Thread has a connection to a MulticastSocket to which it
 * keeps multicasting DatagramPackets at regular intervals of time.
 * This thread utilizes the CryptObject and ObjectSerializer Helper
 * objects to multicast encrypted serialized messages.
 * Creation date: (10/15/2001 11:50:10 AM)
 * @author: Nanditha Nayani Siram
 */

public class MulticastSender implements Runnable{

 private InetAddress inetAddress = null;
 private DatagramPacket dataPacket = null;
 private int port = 10000;
 private byte ttl = (byte) 1;
 private String hostLocation = "";
 private byte[] buffer;
 private MulticastSocket multicastSocket = null;
 private long TPmcast = 0;
 private CryptObj cryptObject = null;
 private ObjectSerializer objSerializer = null;

public void run()
{
 Thread CurrentThread = Thread.currentThread();

 try
 {
 while(true)
 {
 dataPacket =
 new DatagramPacket(buffer,buffer.length,inetAddress,port);
 multicastSocket.send(dataPacket,ttl);
 System.out.println("\n Multicasting Encrypted HH Location : " +
hostLocation);
 CurrentThread.sleep(TPmcast);

157

 }//end of while

 }
 catch(InterruptedException ie){

 System.out.println(ie.getMessage());

 }//end of try-catch
 catch(SocketException se)
 {
 System.out.println(se);
 }
 catch(Exception e)
 {
 System.out.println(e);
 }//end of try-catch

}//end of run

 public MulticastSender(
 long mcastTime,
 int mcastPort,
 AuthenticatedPacket authPacket,
 String headHunterLoc) {

 try {

 TPmcast = mcastTime;
 inetAddress = InetAddress.getByName(authPacket.getMCAddress());
 port = mcastPort;
 hostLocation = headHunterLoc;
 cryptObject = new CryptObj(authPacket.getKey());

 //----- Without Encryption -----------
 // buffer = hostLocation.getBytes();

 //---- With Encryption -----------------
 //Create the encrypted host location by sealing
 //location with secret-key and serializing this object for transmission

 SealedObject sealedHostLocation = (SealedObject)
cryptObject.enCryptObj(hostLocation);
 objSerializer = new ObjectSerializer();
 objSerializer.setObject(sealedHostLocation);
 buffer = objSerializer.getBytes();

 multicastSocket = new MulticastSocket();
 multicastSocket.joinGroup(inetAddress);
 System.out.println("Headhunter joined multicast group:" + inetAddress);

 } catch (SocketException se) {
 System.out.println(se);
 } catch (Exception e) {
 System.out.println(e);
 System.exit(1);
 }

}}//end of class MulticastSender

umm.helper.dependent.ObjectSerializer
package umm.helper.dependent;

import java.io.*;

/**
 * This ObjectSerializer class is a mechanism to

158

 * transmit Java objects over the network.
 * It makes use of the Java serialization mechanism.
 * Creation date: (10/14/2001 5:09:08 PM)
 * @author: Nanditha Nayani Siram
 */

public class ObjectSerializer{
 Object myObj;

 public ObjectSerializer() {
 super();
 }

 public ObjectSerializer(Object o) {
 setObject(o);
 }

 /**
 Interprets the bytes as a serialized object
 */
 public ObjectSerializer(byte[] b) {
 setBytes(b);
 }

 /**
 Get the contained Object
 */
 public Object getObject() {
 return myObj;
 }

 /**
 Set the contained Object
 */
 public void setObject(Object o) {
 myObj = o;
 }

 /**
 Serializes the contained object into a byte array
 */
 public byte[] getBytes() {
 try {
 ByteArrayOutputStream ostream = new ByteArrayOutputStream(256);
 ObjectOutputStream p = new ObjectOutputStream(ostream);
 p.writeObject(myObj);
 p.flush();
 byte[] rtnVal = ostream.toByteArray();
 ostream.close();
 return rtnVal;
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }
 }

 /**
 Interprets the bytes as a serialized object and sets the contained reference
 to the unserialized version of the serialized object
 */
 public void setBytes(byte[] b) {
 try {
 ByteArrayInputStream is = new ByteArrayInputStream(b);
 ObjectInputStream p = new ObjectInputStream(is);
 myObj = p.readObject();
 is.close();
 } catch (Exception e) {
 e.printStackTrace();
 }

159

 }

}// End class ObjectSerializer

umm.helper.dependent. RequestProcessor
package umm.helper.dependent;

import umm.entity.beans.*;
import umm.services.*;

import java.util.*;
import java.rmi.*;

/**
 * RequestProcessor provides the glue in the Web tier
 * for holding the application components together.
 * It contains logic that needs to be executed for each
 * request. RequestProcessor collaborates with the
 * QueryManager and gets a Hashtable of search results
 * from the QueryManager which it forwards to the View
 * ComponentList.jsp.
 * Creation date: (8/16/2001 1:08:35 PM)
 * @author: Nanditha Nayani
 */
public class RequestProcessor {

 private java.util.Hashtable resultTable = null;
 private IQueryManager qm = null;
 private QueryBean queryBean = null;

/**
 * RequestProcessor constructor comment.
 */
public RequestProcessor() throws Exception {

 String qmLocation = "//magellan.cs.iupui.edu:8500/QueryManager";
 qm = (IQueryManager) Naming.lookup(qmLocation);
 System.out.println("Looked up QM");

}

public void clearResults() {
 resultTable = null;
}

public java.util.Hashtable getResultTable() throws Exception {

 if (resultTable == null) {
 resultTable = qm.getSearchResultTable(queryBean);
 }

 return resultTable;
}

public void setResultTable(java.util.Hashtable newResultTable) {
 resultTable = newResultTable;
}

public QueryBean getQueryBean() {
 return queryBean;
}
public void setQueryBean(QueryBean newQueryBean) {
 queryBean = newQueryBean;
 resultTable = null;
}
}

160

umm.helper.dependent.UniFrameIntrospector
package umm.helper.dependent;

import javax.servlet.http.*;
import java.lang.reflect.*;
import java.beans.*;
import java.util.*;

/**
 * This utility class uses reflection to analyze the properties
 * of an object and retrieve the value corresponding to a
 * specific attribute.
 * Creation date: (6/11/2001 9:18:51 AM)
 * @author: Nanditha Nayani Siram
 */
public class UniFrameIntrospector {

public UniFrameIntrospector() {
 super();
}

/**
* Introspect Bean and return Property
*/
public static Object getProperty(Object bean, String propertyName)
 throws UniFrameIntrospectorException {

 Object property = null;
 Method method = null;
 Object[] args = null;

 try {

 BeanInfo info = Introspector.getBeanInfo(bean.getClass());
 PropertyDescriptor[] pds = info.getPropertyDescriptors();

 for (int i = 0; pds != null && i < pds.length; i++) {
 if (pds[i].getName().equals(propertyName)) {
 method = pds[i].getReadMethod();
 break;
 }
 }
 } catch (IntrospectionException e) {
 throw new UniFrameIntrospectorException(
 "Error analyzing the bean class: " + e.getMessage());
 }

 if (method == null)
 throw new UniFrameIntrospectorException(
 "Property " + propertyName + " not found");

 try {

 property = method.invoke(bean, args);
 System.out.println("Active Registry obtained UMM Spec URL by Introspection
: " + property);

 } catch (Exception e) {
 throw new UniFrameIntrospectorException(
 e.getClass().getName()
 + ": "
 + "Failed to get property "
 + propertyName
 + ", message: "
 + e.getMessage());
 }

 return property;
}

161

}

umm.helper.dependent.UniFrameIntrospectorException
package umm.helper.dependent;

/**
 * Creation date: (10/5/2001 12:55:32 PM)
 * @author: Nanditha Nayani Siram
 */
public class UniFrameIntrospectorException extends Exception {
public UniFrameIntrospectorException() {
 super();
}
public UniFrameIntrospectorException(String s) {
 super(s);
}
}

umm.helper.dependent.UniFrameSpecificationParser
package umm.helper.dependent;
import umm.entity.beans.*;

import java.io.IOException;
import org.w3c.dom.Document;
import org.w3c.dom.DocumentType;
import org.w3c.dom.NamedNodeMap;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
import org.apache.xerces.parsers.DOMParser;
import java.util.*;

/**
 * This class is used to parse a UniFrame XML
 * specification file and construct an instance
 * of the ComponentBean.
 * Creation date: (9/14/2001 12:57:07 PM)
 * @author: Nanditha Nayani Siram
 */

public class UniFrameSpecificationParser {

 private ComponentBean cbean = new ComponentBean();
 private Vector functionVector = new Vector();
 private boolean populatedFlag = false;
 private Vector syntaxVector = new Vector();

/**
 * Constructor
 */
public UniFrameSpecificationParser(String uri) {

 // Instantiate your vendor's DOM parser implementation
 DOMParser parser = new DOMParser();
 try {
 parser.parse(uri);
 Document doc = parser.getDocument();

 // Read the document from the DOM tree.
 readNode(doc);
 } catch (IOException e) {
 System.out.println("Error reading URI: " + e.getMessage());
 } catch (Exception ex) {
 System.out.println("Error in parsing: " + ex.getMessage());
 }

}

/**

162

 * Return Component Bean.
 */
public ComponentBean getComponentBean() {

 if (populatedFlag == false) {
 for (int i = 0; i < functionVector.size(); i++) {
 FunctionBean fBean = new FunctionBean();
 fBean.setId(cbean.getId());
 fBean.setFunctionName((String) functionVector.get(i));
 fBean.setSyntacticContract((String) syntaxVector.get(i));
 cbean.addFunctionBeans(fBean);
 }
 populatedFlag = true;
 }
 return cbean;
}

/**
 * Parse through XML tree using recursion.
 */
private void readNode(Node node) {

 if (node.getNodeName().equalsIgnoreCase("ComponentName")) {
 cbean.setName(node.getFirstChild().getNodeValue());
 } else
 if (node.getNodeName().equalsIgnoreCase("Description")) {
 cbean.setDescription(node.getFirstChild().getNodeValue());
 } else
 if (node.getNodeName().equalsIgnoreCase("Function")) {
 functionVector.add(node.getFirstChild().getNodeValue());
 } else
 if (node.getNodeName().equalsIgnoreCase("ID")) {
 cbean.setId(node.getFirstChild().getNodeValue());
 } else
 if (node.getNodeName().equalsIgnoreCase("Purpose")) {

 cbean.setFunction(node.getFirstChild().getNodeValue());
 } else
 if
(node.getNodeName().equalsIgnoreCase("Algorithm")) {

 cbean.setAlgorithm(node.getFirstChild().getNodeValue());
 } else
 if
(node.getNodeName().equalsIgnoreCase("Complexity")) {

 cbean.setComplexity(node.getFirstChild().getNodeValue());
 } else
 if
(node.getNodeName().equalsIgnoreCase("Contract")) {

 syntaxVector.add(node.getFirstChild().getNodeValue());
 } else
 if
(node.getNodeName().equalsIgnoreCase("Technology")) {

 cbean.setTechnology(node.getFirstChild().getNodeValue());
 } else
 if
(node.getNodeName().equalsIgnoreCase("PreprocessingCollaborators")) {

 cbean.setPreprocessingCollaborators(node.getFirstChild().getNodeValue());
 } else
 if
(node.getNodeName().equalsIgnoreCase("Mobility")) {

 cbean.setMobility(node.getFirstChild().getNodeValue());
 } else

163

 if (node.getNodeName().equalsIgnoreCase("Availability")) {

 cbean.setAvailability(

 (new Double(node.getFirstChild().getNodeValue()).doubleValue()));

 } else

 if (node.getNodeName().equalsIgnoreCase("End2EndDelay")) {

 cbean.setEnd2endDelay(

 (new Double(node.getFirstChild().getNodeValue()).doubleValue()));

 }

 // recurse on each child
 NodeList children = node.getChildNodes();
 if (children != null) {
 for (int i = 0; i < children.getLength(); i++) {
 readNode(children.item(i));
 }
 }
}
}

umm.services.ActiveRegistry
package umm.services;

import umm.entity.beans.*;
import umm.helper.dependent.*;
import umm.services.*;

import java.rmi.registry.*;
import java.rmi.*;
import java.net.*;
import java.util.*;
import java.rmi.server.*;

/**
 * The ActiveRegistry class receives multicast messages from the Headhunter
 * by using the MulticastReceiver class. Interaction with the Headhunter for
 * passing its contact information and component information are done through
 * RMI-JRMP. It also communicates with the DomainSecurityManager for
 * authentication purposes using RMI-JRMP. The ActiveRegistry uses the
 * UniFrameIntrospector for the purpose of obtaining the UniFrame specifications
 * of the components registered with it. It also uses the UniFrameSpecificationParser
 * for parsing the specifications and building instances of ComponentBean objects,
 * which it returns to the Headhunter.
 * Creation date: (11/14/2001 5:09:08 PM)
 * @author: Nanditha Nayani Siram
 */

public class ActiveRegistry extends UnicastRemoteObject implements IActiveRegistry
{

 private int port = 9000;
 private String userType = "Registry";

/**
 * Obtain URL List of Registered Components.
 */
private String[] list() {

 String[] listOfURLS = null;
 try {
 listOfURLS = Naming.list("//magellan.cs.iupui.edu:9000");
 } catch (java.rmi.RemoteException e) {

164

 System.out.println(e.getMessage());
 } catch (Exception e) {
 System.out.println(e.getMessage());
 }

 return listOfURLS;
}

public static void main(String[] args) {

 int rmiRegistryPort = 9000;
 int mcastPort = 10000;
 String userName = "Reg1";
 String password = "Reg1";
 String domain = "Finance";
 String activeRegistryLocation = "//magellan.cs.iupui.edu:8500/ActiveRegistry";
 String dsmLocation = "//magellan.cs.iupui.edu:8500/DomainSecurityManager";

 try {
 System.setSecurityManager(new RMISecurityManager());
 Naming.rebind(
 activeRegistryLocation,
 new ActiveRegistry(
 rmiRegistryPort,
 mcastPort,
 userName,
 password,
 domain,
 activeRegistryLocation,
 dsmLocation)
);
 System.out.println("ActiveRegistry is ready.");
 } catch (Exception e) {
 System.out.println("ActiveRegistry failed: " + e);
 }
}

/**
 * The ActiveRegistry Constructor
 */
public ActiveRegistry(
 int rmiRegistryPort,
 int mcastPort,
 String userName,
 String password,
 String domain,
 String activeRegistryLocation,
 String dsmLocation)
 throws RemoteException {

 try {

 String rmiRegistryLocation = (InetAddress.getLocalHost()).toString();
 port = rmiRegistryPort;

 //Create the registry on this host and port
 LocateRegistry.createRegistry(port);

 rmiRegistryLocation = rmiRegistryLocation + ":" + port;
 System.out.println("\n Active Registry Created RMI Registry At : " +
rmiRegistryLocation);

 IDomainSecurityManager dsmanager =
 (IDomainSecurityManager) Naming.lookup(dsmLocation);
 AuthenticatedPacket authpacket = null;

 System.out.println("Active Registry Contacting DSM for Authentication.");

 authpacket =

165

 dsmanager.authenticationService(
 userType,
 userName,
 password,
 activeRegistryLocation,
 domain);

 System.out.println("Active Registry Authenticated by DSM.");

 MulticastReceiver mcastReceiver =
 new MulticastReceiver(mcastPort, authpacket,
activeRegistryLocation);
 Thread receiverThread = new Thread(mcastReceiver);
 receiverThread.start();

} catch (Exception e) {
 System.out.println(e.getMessage());
}

} //end of constructor

/**
 * Returns components to HH.
 */
public Hashtable getComponentData() throws RemoteException
{
 Hashtable objectTable = new Hashtable();

 System.out.println("Active Registry contacted by Headhunter to Retrieve Component
Data");

 try
 {
 String[] objURL = list();

 for(int i=0;i<objURL.length;i++)
 {
 System.out.println("Active Registry gathering component
information from : " + objURL[i]);

 //Registry looking up object registered with it.
 System.setSecurityManager(new RMISecurityManager());
 Object obj = Naming.lookup(objURL[i]);

 //Obtain the location(URL) of the UMMSpecification for
this object by
 //introspecting its ummSpecification property.

 String ummSpecURL = (String)
UniFrameIntrospector.getProperty(obj,"ummSpecURL");

 //Call the XMLParser by passing this URL. The XML Parser
will parse the XML specification
 //and construct a ComponentBean from the specification
which it returns.

 UniFrameSpecificationParser xmlDomParser = new
UniFrameSpecificationParser(ummSpecURL);
 ComponentBean componentBean =
xmlDomParser.getComponentBean();

 //Add the component to the Hashtable
 objectTable.put(objURL[i],componentBean);
 }//end for

 }
 catch(Exception e){

166

 System.out.println(e.getMessage());
 }

 //Once the Hashtable is filled return the hashtable
 return objectTable;
 }

}//end of Active Registry

umm.services.DomainSecurityManager
package umm.services;

import umm.entity.beans.*;
import umm.helper.dependent.*;
import umm.helper.dataaccess.*;

import java.net.*;
import java.util.*;
import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;
import java.security.Principal;
import java.security.acl.*;

import sun.security.acl.*;
import javax.crypto.*;

/**
 * This class implements IDomainSecurityManager interface.
 * The DSM performs the functions of generating secret-keys
 * for the domains using the CreateKey helper class.
 * It authenticates the principals against the DSM_Repository
 * with the help of the DSMRepositoryHelper and distributes the
 * secret-keys and multicast addresses to Headhunters and
 * Active Registries. The communication between the parties
 * is based on RMI-JRMP.
 * Creation date: (9/14/2001 12:57:07 PM)
 * @author: Nanditha Nayani Siram
 */

public class DomainSecurityManager extends UnicastRemoteObject implements
IDomainSecurityManager
{

 private static final String securityOwnerString = "DomainSecurityManager";
 private static final String aclIdentifier = "DomainSecurityACL";

 private static final Principal securityOwner = new
PrincipalImpl(securityOwnerString);
 private static final Acl domainACL = new AclImpl(securityOwner,aclIdentifier);

 private static Hashtable userdomainMapping = null;
 private static Hashtable domainList = null;
 private static Hashtable HHAddressAllocTable = new Hashtable();
 private static Hashtable registeredHHTable = new Hashtable();
 private static Hashtable keyTable = new Hashtable();
 private static Random rand = new Random();

/**
 * Construtor
 */

public DomainSecurityManager() throws RemoteException {
 super();
 try {
 createACLEntries();
 generateSecretKeys();
 } catch (DomainSecurityManagerException e) {
 System.out.println(e);

167

 }
}

public static void main(String[] args) {

 String dsmLocation = "//magellan.cs.iupui.edu:8500/DomainSecurityManager";
 try {
 System.setSecurityManager(new RMISecurityManager());
 Naming.rebind(dsmLocation, new DomainSecurityManager());
 System.out.println("DomainSecurityManager " + dsmLocation + " is ready.");

 } catch (Exception e) {
 System.out.println("DomainSecurityManager failed: " + e);
 }

}

/**
 * Return List of Registered HHs.
 */
 public java.util.ArrayList getHHListForDomain(String domainName)
 throws RemoteException {

 System.out.println("DSM Contacted by QM for HH List for : " + domainName + "
Domain");

 ArrayList hhList = new ArrayList();
 Enumeration e = registeredHHTable.keys();

 while (e.hasMoreElements()) {
 String key = (String) e.nextElement();
 String value = (String) registeredHHTable.get(key);
 if((value).equalsIgnoreCase(domainName))
 {
 hhList.add(key);
 }//end if
 }//end while
 return hhList;
}

/**
 * authenticate principal against DSM_Repository
 */
private static Principal retrieveUser(
 String userType,
 String userName,
 String password)
 throws DomainSecurityManagerException {

 // load user from database
 boolean userExists =
 DSMRepositoryHelper.authenticateUser(userType, userName, password);

 // if not found, throw exception
 if (!userExists) {
 throw new DomainSecurityManagerException(
 "User " + userName + " failed authentication.",
 null);
 }

 System.out.println("DSM authenticated " + userName);

 // Create the Principal object
 Principal user = new PrincipalImpl(userName);

 return user;
}

/**

168

 * Get key for given domain.
 */
private static SecretKey getKey(String domainName)
 throws DomainSecurityManagerException {
 return (SecretKey) keyTable.get(domainName);
}

/**
 * Get multicast address for user.
 */
private static String getDomainAddressForUser(
 String userType,
 String userName,
 String password,
 String location,
 String domainName)
 throws DomainSecurityManagerException {
 String domainAddress = null;

 // Create the Principal object
 Principal user = retrieveUser(userType, userName, password);
 Permission permission = new PermissionImpl(domainName);
 if (isUserAuthenticated(user, permission)) {
 domainAddress = pickDomainAddress(userType, domainName, location);
 } else {
 throw new DomainSecurityManagerException(
 "User " + userName + " is not authorized for the domain " +
domainName,
 null);
 }

 System.out.println("DSM authorized " + userName +
 " and allocated multicast address " + domainAddress);
 return domainAddress;
}

/**
 * Pick multicast address for HH/AR.
 */
private static String pickDomainAddress(
 String userType,
 String domainName,
 String location)
 throws DomainSecurityManagerException {
 String domainAddress = null;

 if ((domainList != null) && (domainList.containsValue(domainName))) {

 //If a registry requests an address check if there are headhunters in this
 //domain. Randomly pick an address in this domain to which headhunters
 //already multicast.
 if ((userType.equals("Registry"))
 && (HHAddressAllocTable.containsValue(domainName))) {
 Enumeration e = HHAddressAllocTable.keys();
 Vector thisVector = new Vector();
 while (e.hasMoreElements()) {
 String key = (String) e.nextElement();
 if (((String)
HHAddressAllocTable.get(key)).equals(domainName))
 thisVector.add(key);
 }

 int size = thisVector.size();
 if (size > 0) {
 int num = rand.nextInt(size);
 domainAddress = (String) thisVector.get(num);
 }
 }
 //If a headhunter requests an address randomly pick an address in this

169

domain to
 //allocate to headhunter.
 else {

 Enumeration e = domainList.keys();
 Vector thisVector = new Vector();
 while (e.hasMoreElements()) {
 String key = (String) e.nextElement();
 if (((String) domainList.get(key)).equals(domainName))
 thisVector.add(key);
 }

 int size = thisVector.size();
 if (size > 0) {
 int num = rand.nextInt(size);
 domainAddress = (String) thisVector.get(num);
 }
 //Add the allocated address to the headhunterList if not already
added.
 if ((domainAddress != null)
 && (userType.equals("HeadHunter"))
 && !(HHAddressAllocTable.containsKey(domainAddress))) {
 HHAddressAllocTable.put(domainAddress, domainName);
 registeredHHTable.put(location, domainName);
 System.out.println("Registered " + (String)
registeredHHTable.get(location) +
 " Headhunter located at " + location);
 }

 }
 } else {
 throw new DomainSecurityManagerException(
 "No Such Domain Exists: " + domainName,
 null);
 }

 return domainAddress;
}

/**
 * Verify user authentication
 */
private static final boolean isUserAuthenticated(
 Principal user,
 Permission domain) {
 // Just use the java.security.acl.ACL class to handle this
 return domainACL.checkPermission(user, domain);
}

/**
 * add ACL Entries.
 */
private static void addAclEntry(String userName, String domain)
 throws DomainSecurityManagerException {

 // Create the Principal object
 Principal user = new PrincipalImpl(userName);

 // create a new Acl entry for this user
 AclEntry newAclEntry = new AclEntryImpl(user);

 // initialize some temporary variables
 Permission permission = new PermissionImpl(domain);

 // add the permission to the aclEntry
 newAclEntry.addPermission(permission);

 try {
 // add the aclEntry to the ACL for the securityOwner

170

 domainACL.addEntry(securityOwner, newAclEntry);

 } catch (NotOwnerException noE) {
 throw new DomainSecurityManagerException("In addAclEntry", noE);
 }
}

/**
 * Remote method called by HH/AR.
 */
public AuthenticatedPacket authenticationService(
 String userType,
 String userName,
 String password,
 String location,
 String domain)
 throws RemoteException {
 AuthenticatedPacket authPacket = new AuthenticatedPacket(null, null);
 try {
 authPacket.setMCAddress(
 getDomainAddressForUser(
 userType,
 userName,
 password,
 location,
 domain));
 authPacket.setKey(getKey(domain));

 } catch (Exception e) {
 System.out.println(e);
 }
 return authPacket;
}

/**
 * Create ACL Entries.
 */
private static void createACLEntries() throws DomainSecurityManagerException {

 System.out.println("DSM Creating ACL Entries. ");

 try {
 // loads all the domains addresses associated with
 // various domains into a hashtable
 if (userdomainMapping == null) {
 // initialize the jdbc helper class
 DSMRepositoryHelper.initialize();
 userdomainMapping = DSMRepositoryHelper.loadUserDomainMapping();

 if (userdomainMapping != null) {
 Enumeration e = userdomainMapping.keys();
 while (e.hasMoreElements()) {
 String key = (String) e.nextElement();
 String domainName = (String)
userdomainMapping.get(key);
 addAclEntry(key, domainName);
 System.out.println(
 "Added ACLEntry for User = " + key + "
Domain = " + domainName);

 } //while
 } //if(userdomainMapping != null)
 } //if (userdomainMapping==null)

 if (domainList == null) {
 domainList = DSMRepositoryHelper.loadDomainList();
 System.out.println("\n Loaded DomainList");
 }

171

 } catch (Exception e) {
 throw new DomainSecurityManagerException("Error in init method", e);
 }
}

/**
 * Generates secret Keys.
 */
private static void generateSecretKeys() throws DomainSecurityManagerException {

 System.out.println("DSM Generating Secret-Keys For Domains. ");
 try {
 ArrayList listOfDomains = DSMRepositoryHelper.getListOfDomains();

 for (int i = 0; i < listOfDomains.size(); i++) {
 String domainName = (String) listOfDomains.get(i);
 SecretKey key = CreateKey.getKey();
 keyTable.put(domainName, key);
 System.out.println("DSM Created Secret-Key for Domain : " +
domainName);
 } //end for
 } catch (Exception e) {
 throw new DomainSecurityManagerException(
 "DSM failed to generate keys." + e,
 null);
 }
}

}//end of DomainSecurityManager

umm.services.DomainSecurityManager
package umm.services;

public class DomainSecurityManagerException extends Exception
{

 private String message = null;
 private Exception exception = null;

 public DomainSecurityManagerException(String smessage, Exception ex)
 {
 // store the passed in values as class variables
 message = smessage;
 exception = ex;
 }

 public String getMessage()
 {
 // return the message to the user
 return message;
 }

 public void printStackTrace()
 {
 // output the message & print the StackTrace
 System.out.println(message);
 exception.printStackTrace();
 }
}

umm.services.Headhunter
package umm.services;

import umm.entity.beans.*;
import umm.helper.dependent.*;
import umm.services.*;
import umm.helper.dataaccess.*;

172

import java.net.*;
import java.util.*;

import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;

import java.security.*;
import java.io.*;

/**
 * This class implements the IHeadhunter interface.
 * The Headhunter class interacts with the QueryManager
 * and DomainSecurityManager using RMI-JRMP. The Headhunter
 * uses the MulticastSender to multicast encrypted messages
 * to ActiveRegistry services. The Headhunter also communicates
 * with the ActiveRegistry services through unicast RMI-JRMP for
 * the purpose of obtaining the component information as a Hashtable
 * of ComponentBean objects. The HeadHunter persists this component
 * information to the Meta_Repository and uses the MetaRepositoryHelper
 * for the purpose of performing searches against the repository.
 * The SQL query for the searches is obtained from the QueryBean which
 * is propagated to the Headhunter by the QueryManager.
 * Creation date: (10/15/2001 11:50:10 AM)
 * @author: Nanditha Nayani
 */

public class Headhunter extends UnicastRemoteObject implements IHeadhunter
{

private Hashtable registryTable = new Hashtable();
private java.lang.String userType = "HeadHunter";

/**
* Remote method invoked by QM.
*/
public Hashtable performSearch(QueryBean querybean) throws RemoteException {

 System.out.println("Processing Query Request From Query Manager");

 MetaRepositoryHelper srchEngine = new MetaRepositoryHelper(querybean);
 try {
 return srchEngine.getSearchResultTable();
 } catch (Exception e) {
 System.out.println(e);
 return null;
 }
}

/**
* Create the MR.
*/
private static void createMetaRepository() throws Exception {

 String componentCreateString =
 "CREATE TABLE COMPONENT(" +
 "ID VARCHAR2(150) PRIMARY KEY," +
 "NAME VARCHAR2(100)," +
 "DESCRIPTION VARCHAR2(1000)," +
 "FUNCTION VARCHAR2(500)," +
 "ALGORITHM VARCHAR2(200)," +
 "COMPLEXITY VARCHAR2(30)," +
 "DOMAIN VARCHAR2(30)," +
 "TECHNOLOGY VARCHAR2(30)," +
 "COLLABORATORS VARCHAR2(200)," +
 "END2ENDDELAY NUMBER(9)," +
 "AVAILABILITY NUMBER(9)," +

173

 "MOBILITY VARCHAR2(5))";

 String functionCreateString =

 "CREATE TABLE FUNCTION(" +
 "ID VARCHAR2(150) NOT NULL," +
 "FUNCTION_NAME VARCHAR2(250) NOT NULL," +
 "SYNTACTIC_CONTRACT VARCHAR2(250) NOT NULL," +
 "CONSTRAINT pk1 PRIMARY KEY(ID,FUNCTION_NAME,SYNTACTIC_CONTRACT)," +
 "CONSTRAINT fk1 FOREIGN KEY(ID)" +
 "REFERENCES COMPONENT(ID) ON DELETE CASCADE)";

 SQLHelper sqlEngine = new SQLHelper();
 sqlEngine.updateTable(componentCreateString);
 sqlEngine.updateTable(functionCreateString);
 sqlEngine.shutDown();

}

public static void main(String[] args) {

 long mcastTime = 5000;
 String headhunterLocation = "//magellan.cs.iupui.edu:8500/HeadHunter";
 String dsmLocation = "//magellan.cs.iupui.edu:8500/DomainSecurityManager";
 int mcastPort = 10000;
 String userName = "HeadHunt1";
 String password = "HeadHunt1";
 String domain = "Finance";

 if(args.length > 0)
 mcastTime = Long.parseLong(args[0]);

 try {
 System.setSecurityManager(new RMISecurityManager());
 Naming.rebind(
 headhunterLocation,
 new Headhunter(
 mcastTime,
 mcastPort,
 userName,
 password,
 domain,
 headhunterLocation,
 dsmLocation));
 System.out.println("HeadHunter is ready.");
 } catch (Exception e) {
 System.out.println("HeadHunter failed: " + e);
 }

}

/**
* Constructor
*/
 public Headhunter(
 long mcastTime,
 int mcastPort,
 String userName,
 String password,
 String domain,
 String headhunterLocation,
 String dsmLocation)
 throws RemoteException {

 System.out.println("\n HeadHunter activated at " + headhunterLocation);

 try {
 Headhunter.createMetaRepository();
 System.out.println("MetaRepository Created.");

174

 } catch (Exception e) {
 //Ignore if repository already created
 System.out.println("MetaRepository Created.");
 }

 try {

 System.out.println("Headhunter Contacting DSM for Authentication.");

 IDomainSecurityManager dsmanager =
 (IDomainSecurityManager) Naming.lookup(dsmLocation);
 AuthenticatedPacket authpacket = null;
 authpacket =
 dsmanager.authenticationService(
 userType,
 userName,
 password,
 headhunterLocation,
 domain);

 System.out.println("Headhunter Authenticated by DSM");

 MulticastSender mcastSender =
 new MulticastSender(mcastTime, mcastPort, authpacket,
headhunterLocation);
 Thread senderThread = new Thread(mcastSender);
 senderThread.start();

 } catch (Exception e) {
 System.out.println(e.getMessage());
 }

} //end of constructor

/**
 * Persist component information obtained from AR
 * into MR.
 */
private void populateMetaRepository(String regLoc) {

 // retrieve component info
 try {

 SQLHelper sqlEngine = new SQLHelper();

 System.out.println("Headhunter contacting Registry at " + regLoc + " for
registered services data.");
 System.setSecurityManager(new RMISecurityManager());
 IActiveRegistry Reg = (IActiveRegistry) Naming.lookup(regLoc.trim());

 Hashtable CompData = (Hashtable) Reg.getComponentData();
 System.out.println("Headhunter obtained registered services data from : "
+ regLoc);

 Enumeration e = CompData.elements();
 while (e.hasMoreElements()) {
 ComponentBean componentBean = (ComponentBean) e.nextElement();
 try {
 componentBean.persistBean(sqlEngine);
 } catch (Exception ex) {
 //If the component already exists in MR then ignore.
 }
 System.out.println("Headhunter persisted component " +
componentBean.getId() + " into MR.");
 }//end while

 sqlEngine.shutDown();

175

 } catch (Exception ex) {
 System.out.println("HH exception " + ex);
 }
}

/**
* Remote method invoked by AR to pass its location information
*/
public void receiveUnicastCommunication(String regLoc) throws RemoteException {

 System.out.println("Headhunter received unicast communication from Registry at : "
+ regLoc);
 registryTable.put(regLoc, (new java.util.Date()));
 populateMetaRepository(regLoc);

}

}//end of HeadHunter

umm.services.IActiveRegistry
package umm.services;

import java.rmi.*;
import java.util.*;

/**
 * This is the interface for the ActiveRegistry service.
 * This interface publishes the following method:
 * getComponentData(): This method is invoked by the Headhunter
 * to retrieve component information from the ActiveRegistry.
 * Creation date: (9/14/2001 12:57:07 PM)
 * @author: Nanditha Nayani Siram
 */
public interface IActiveRegistry extends Remote
{
 public Hashtable getComponentData() throws RemoteException;
}

umm.services.IDomainSecurityManager
package umm.services;

import umm.entity.beans.*;

import java.util.*;
import java.rmi.*;

/**
 * This is the interface for the DomainSecurityManager service.
 * This interface publishes two methods:
 * getHHListForDomain: This method is invoked by the QueryManager.
 * The purpose of this method is to return a list of registered
 * Headhunters for a particular domain to the QueryManager.
 * authenticationService: This method is invoked by the Headhunter
 * and ActiveRegistry components to authenticate themselves with
 * the DSM.
 * Creation date: (3/16/02 9:07:49 PM)
 * @author:
 */
public interface IDomainSecurityManager extends java.rmi.Remote{

 public ArrayList getHHListForDomain(String domainName) throws RemoteException;
 public AuthenticatedPacket authenticationService(String userType, String userName,
String password, String contactLocation, String domain) throws RemoteException;
}

umm.services.IHeadhunter
package umm.services;

176

import umm.entity.beans.*;

import java.rmi.*;
import java.util.*;
import java.security.*;
import java.io.*;

/**
 * This is the interface for the Headhunter service.
 * This interface publishes the following methods:
 * performSearch: This method is invoked by the QueryManager
 * to propagate a search query.
 * receiveUnicastCommunication: This method is invoked by the
 * ActiveRegistry to inform the Headhunter of its location.
 * Creation date: (9/14/2001 12:57:07 PM)
 * @author: Nanditha Nayani Siram
 */
public interface IHeadhunter extends Remote {

 public Hashtable performSearch(QueryBean querybean) throws RemoteException;
 public void receiveUnicastCommunication(String regLoc) throws RemoteException;

}

umm.services.QueryManager
package umm.services;

import umm.entity.beans.*;
import umm.services.*;

import java.net.*;
import java.util.*;

import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;

/**
 * This class implements the IQueryManager interface.
 * The QueryManager class propagates the search query
 * as a QueryBean object to the list of Headhunter
 * components obtained from DomainSecurityManager and
 * returns search results to the RequestProcessor.
 * The interaction between these components is based
 * on RMI-JRMP.
 * Creation date: (10/15/2001 11:50:10 AM)
 * @author: Nanditha Nayani Siram
 */

public class QueryManager extends UnicastRemoteObject implements IQueryManager
{

 private IDomainSecurityManager dsm = null;

/**
 * Constructor
 */
public QueryManager(String dsmLocation) throws RemoteException {

 try {
 System.setSecurityManager(new RMISecurityManager());
 dsm = (IDomainSecurityManager) Naming.lookup(dsmLocation);

 } catch (Exception e) {
 System.out.println(e.getMessage());
 }

} //end of constructor

177

/**
 * Remote Method invoked by RequestProcessor to
 * retrieve search results.
 */
public Hashtable getSearchResultTable(QueryBean querybean)
 throws RemoteException {

 System.out.println("QM Requested to propagate Search Query.");

 Hashtable resultTable = new Hashtable();

 System.setSecurityManager(new RMISecurityManager());
 ArrayList hhList = dsm.getHHListForDomain(querybean.getDomain());
 System.out.println("QM obtained regsitered headhunter list from DSM for Domain " +
 querybean.getDomain());

 for (int i = 0; i < hhList.size(); i++)
 {
 try {

 String hhLocation = (String) hhList.get(i);

 IHeadhunter hh = (IHeadhunter) Naming.lookup(hhLocation.trim());

 System.out.println("QM Propagating Query To HH At " + hhLocation);
 Hashtable thisResultTable = hh.performSearch(querybean);
 System.out.println("QM Obtained Results from HH At " + hhLocation);

 Enumeration e = thisResultTable.keys();
 while (e.hasMoreElements()) {
 String id = (String) e.nextElement();
 ComponentBean cbean = (ComponentBean)
thisResultTable.get(id);
 resultTable.put(id, cbean);

 } //end while

 } catch (Exception e) {
 //Ignore exception and move on to next headhunter.
 }
 } //end for

 return resultTable;

}

public static void main(String[] args)
{

 String dsmLocation = "//magellan.cs.iupui.edu:8500/DomainSecurityManager";
 String qmLocation = "//magellan.cs.iupui.edu:8500/QueryManager";
 try
 {
 System.setSecurityManager(new RMISecurityManager());
 Naming.rebind (qmLocation, new QueryManager(dsmLocation));
 System.out.println ("QueryManager is ready.");
 }
 catch (Exception e)
 {
 System.out.println ("QueryManager failed: " + e);
 }

}

}//end of QueryManager

178

umm.tests.AccountServer
package umm.tests;

import java.rmi.server.*;
import java.rmi.*;

/**
 * This is the test service component. The class
 * specifies the ummSpecURL property and has
 * a getter which return the URL.
 * Creation date: (9/14/2001 12:57:07 PM)
 * @author: Nanditha Nayani Siram
 */

public class AccountServer extends UnicastRemoteObject implements IAccountServer{

 private String ummSpecURL = "";

public AccountServer(String newUMMSpecURL) throws RemoteException{
 ummSpecURL = newUMMSpecURL;
}

public String getUmmSpecURL() throws RemoteException {
 return ummSpecURL;
}

public void javaDeposit(float arg1)throws RemoteException { }
public void javaWithdraw(float arg1) throws RemoteException { }
public float javaBalance() throws RemoteException{ return 0;}

public static void main(String[] args) {

 String bindingName = "//magellan.cs.iupui.edu:9000/AccountServer" + args[0];
 String ummSpecUrl = "/home/nnayani/ummspecs/ummspec" + args[1] + ".xml";

 try {
 System.setSecurityManager(new RMISecurityManager());
 Naming.rebind(bindingName, new AccountServer(ummSpecUrl));
 System.out.println("Account Server : " + bindingName + " is ready.");
 } catch (Exception e) {
 System.out.println("Account Server failed: " + e);
 }
}
}

umm.tests.URDSClient
package umm.tests;

import umm.entity.beans.*;
import umm.helper.dependent.*;

import java.util.*;

/**
 * This is a Test Application Client.
 * The client issues several different types and
 * queries via the Request Processor.
 * Creation date: (3/17/02 5:40:28 AM)
 * @author: Nanditha Nayani Siram
 */
public class URDSClient {

/**
 * urdsClientDriver constructor comment.
 */
public URDSClient() {

179

 super();
}
/**
 * Insert the method's description here.
 * Creation date: (3/17/02 5:55:09 AM)
 * @param args java.lang.String[]
 */
public static void main(String[] args) {

 URDSClient urdsClient = new URDSClient();

 //Test Queries
 QueryBean queryBean1 = urdsClient.Query1();
 QueryBean queryBean2 = urdsClient.Query2();
 QueryBean queryBean3 = urdsClient.Query3();
 QueryBean queryBean4 = urdsClient.Query4();
 QueryBean queryBean5 = urdsClient.Query5();
 QueryBean queryBean6 = urdsClient.Query6();
 QueryBean queryBean7 = urdsClient.Query7();
 QueryBean queryBean8 = urdsClient.Query8();
 QueryBean queryBean9 = urdsClient.Query9();
 QueryBean queryBean10 = urdsClient.Query10();

 ArrayList queryList = new ArrayList();
 queryList.add(queryBean1);
 queryList.add(queryBean2);
 queryList.add(queryBean3);
 queryList.add(queryBean4);
 queryList.add(queryBean5);
 queryList.add(queryBean6);
 queryList.add(queryBean7);
 queryList.add(queryBean8);
 queryList.add(queryBean9);
 queryList.add(queryBean10);

 long counter=0;
 long timer=0;

 //Iterate 10 times through 10 queries (10 * 10 =100 queries)
 for(int j=0;j<10;j++)
 {
 for(int i=0;i<queryList.size();i++)
 {
 //Increment counter for each new query request.
 counter++;
 try {

 //Get each new query
 QueryBean queryBean = (QueryBean) queryList.get(i);
 System.out.println(queryBean.getQuery() + "\n");

 //Instantiate RequestProcessor and pass it the query.
 RequestProcessor reqProcessor = new RequestProcessor();
 reqProcessor.setQueryBean(queryBean);

 //starting the timer before query progagation.
 long startTime = System.currentTimeMillis();
 //Actual call to propagate client query.
 Hashtable resultTable = reqProcessor.getResultTable();
 //Ending the timer.
 long endTime = System.currentTimeMillis();

 //Computing the net time for the query servicing so far.
 timer = timer + (endTime - startTime);

 urdsClient.printResults(resultTable);

 } catch (Exception e) {
 System.out.println(e);

180

 }
 }//end for
 }//end iteration

 long avgServiceTime = timer/counter;
 System.out.println("Number of iterations of Client Queries Services = " +
counter);
 System.out.println("Avergae time taken for servicing a Client Query = " +
avgServiceTime);

}

/**
 * Print Results.
 */
public void printResults(Hashtable resultTable) {

 if(resultTable != null)
 {
 Enumeration e = resultTable.keys();
 while(e.hasMoreElements())
 {
 String key = (String) e.nextElement();
 ComponentBean cbean = (ComponentBean) resultTable.get(key);
 System.out.println(cbean.getId());
 }
 System.out.println("---------------");

 }
}

public QueryBean Query1() {
 QueryBean queryBean = new QueryBean();
 queryBean.setDomain("Finance");
 return queryBean;
}

public QueryBean Query2() {
 QueryBean queryBean = new QueryBean();
 queryBean.setDomain("Finance");
 queryBean.setAvailabilityFlag(true);
 queryBean.setAvailabilityConstraint("<");
 queryBean.setAvailabilityValue(100);
 return queryBean;
}

public QueryBean Query3() {
 QueryBean queryBean = new QueryBean();
 queryBean.setDomain("Finance");
 queryBean.setComponentName("Account");
 return queryBean;
}

public QueryBean Query4() {
 QueryBean queryBean = new QueryBean();
 queryBean.setDomain("Finance");
 queryBean.setComponentDescription("Account Management");
 return queryBean;
}

public QueryBean Query5() {
 QueryBean queryBean = new QueryBean();
 queryBean.setDomain("Finance");
 queryBean.setComplexity("O(1)");
 return queryBean;
}

public QueryBean Query6() {
 QueryBean queryBean = new QueryBean();

181

 queryBean.setDomain("Finance");
 queryBean.setEnd2endDelayFlag(true);
 queryBean.setEnd2endDelayConstraint("<");
 queryBean.setEnd2endDelayValue(50);
 return queryBean;
}

public QueryBean Query7() {
 QueryBean queryBean = new QueryBean();
 queryBean.setDomain("Finance");
 queryBean.setFunctionNames("deposit withdraw");
 return queryBean;
}

public QueryBean Query8() {
 QueryBean queryBean = new QueryBean();
 queryBean.setDomain("Finance");
 queryBean.setMobility("yes");
 return queryBean;
}

public QueryBean Query9() {
 QueryBean queryBean = new QueryBean();
 queryBean.setDomain("Finance");
 queryBean.setTechnology("Java-RMI");
 return queryBean;
}

public QueryBean Query10() {
 QueryBean queryBean = new QueryBean();
 queryBean.setDomain("Finance");
 queryBean.setAlgorithms("add sub");
 return queryBean;
}

}//end of URDSClient

UniFrameQuery.jsp
<html>
<html>
<head>
<meta http-equiv="PRAGMA" content="NO-CACHE">
</head>
<%@ page import="java.util.*" %>
<%@ page isErrorPage="false" errorPage="error.jsp"%>
<body bgcolor = #F8F7D9>
<form name="queryFilterForm" method="post" action="ProcessUniFrameQuery.jsp">

 <table width="774" border="0" cellspacing="1" cellpadding="0">
 <tr>
 <td bgcolor="#CCCCCC" valign="top" height="19" colspan="5" >
 Search By Component Details
 </td>
 <td width="5"></td>
 </tr>

 <tr>
 <td height="0" width="104"></td>
 <td width="137"></td>
 <td width="60"></td>
 <td width="277"></td>
 <td width="184"></td>
 <td width="5"></td>
 </tr>
 <tr valign="top">

 <td height="21" colspan="2">Domain</td>

182

 <td valign="top" colspan="4" height="21">
 <select name="domain">
 <option value="Finance" selected>Finance</option>
 <option value="Manufacturing">Manufacturing</option>
 </select>
 </td>
 </tr>
 <tr>

 <td height="37" valign="top" colspan="2">Component Name
 (Enter Keywords)</td>

 <td colspan="3" valign="top" height="37">
 <input type="text" name="componentName" size="80" value="">
 </td>

 <td width="5" height="37"></td>
 </tr>
 <tr>

 <td height="40" valign="top" colspan="2">Component Description

 (Enter Keywords) </td>

 <td colspan="3" valign="top" height="40">
 <input type="text" name="componentDescription" size="80" value="">
 </td>

 <td width="5" height="40"></td>
 </tr>
 <tr>

 <td height="37" valign="top" colspan="2">
 <p>Function Names

 (Enter Keywords) </p>
 </td>

 <td colspan="3" valign="top" height="37">
 <input type="text" name="functionNames" size="80" value="">
 </td>

 <td width="5" height="37"></td>
 </tr>
 <tr>

 <td bgcolor="#CCCCCC" valign="top" height="19" colspan="5" >Search By Functional
Attributes
 </td>
 <td width="5"></td>
 </tr>
 <tr>

 <td height="38" valign="top" colspan="2">Desired Algorithms

 (Enter Keywords) </td>

 <td colspan="3" valign="top" height="38">
 <input type="text" name="algorithms" size="80" value="">
 </td>

 <td width="5" height="38"></td>
 </tr>
 <tr>

 <td height="40" valign="top" colspan="2">Desired Complexity

 (Enter Keywords) </td>

 <td colspan="3" valign="top" height="40">
 <input type="text" name="complexity" size="80" value="">
 </td>

183

 <td width="5" height="40"></td>
 </tr>
 <tr valign="top">

 <td height="30" colspan="2">Technology</td>
 <td valign="top" colspan="4">
 <select name="technology">
 <option value="" selected>None</option>
 <option value="Java-RMI">Java-RMI</option>
 <option value="CORBA">CORBA</option>
 <option value="Voyager">Voyager</option>
 </select>
 </td>
 </tr>
 <tr>

 <td bgcolor="#CCCCCC" valign="top" height="19" colspan="5" >Search By
 Auxillary Atributes</td>

 <td width="5"></td>
 </tr>
 <tr valign="top">

 <td height="30" colspan="2">Mobility</td>
 <td valign="top" colspan="4">
 <select name="mobility">
 <option value="No" selected>No</option>
 <option value="Yes">Yes</option>
 </select>
 </td>
 </tr>
 <tr valign="top">

 <td bgcolor="#CCCCCC" colspan="5" valign="top" height="19" >Search By
 QOS Metrics</td>

 <td width="5"></td>
 </tr>
 <tr>

 <td height="15" valign="top" bgcolor="#CCCCCC" width="104">Select</td>

 <td colspan="2" valign="top" bgcolor="#CCCCCC">QOS Parameter</td>

 <td valign="top" bgcolor="#CCCCCC" width="277">Constraints</td>

 <td valign="top" bgcolor="#CCCCCC" width="184">Preferences</td>

 <td width="5"></td>
 </tr>
 <tr>

 <td height="41" valign="top" width="104">
 <input type="checkbox" name="qosMetric" value="end2endDelay">
 </td>

 <td colspan="2" valign="top"> End To End Delay </td>

 <td valign="top" width="277">
 <select name="end2endDelayConstraint">
 <option value="None" selected>None</option>
 <option value="=">=</option>
 <option value="<"><</option>
 <option value=">">></option>
 <option value="<="><=</option>
 <option value=">=">>=</option>
 </select>
 <input type="text" name="end2endDelayValue" size="20" value="">

184

 </td>

 <td valign="top" width="184">
 <select name="end2endDelayPreference">
 <option value="None" selected>None</option>
 <option value="Descending">Max</option>
 <option value="Ascending">Min</option>
 <option value="With">With</option>
 <option value="Random">Random</option>
 <option value="First">First</option>
 </select>
 </td>

 <td width="5"></td>
 </tr>
 <tr>

 <td height="41" valign="top" width="104">
 <input type="checkbox" name="qosMetric" value="availibility">
 </td>

 <td colspan="2" valign="top"> Availability</td>

 <td valign="top" width="277">
 <select name="availabilityConstraint">
 <option value="None" selected>None</option>
 <option value="=">=</option>
 <option value="<"><</option>
 <option value=">">></option>
 <option value="<="><=</option>
 <option value=">=">>=</option>
 </select>
 <input type="text" name="availabilityValue" size="20" value="">
 </td>

 <td valign="top" width="184">
 <select name="availabilityPreference">
 <option value="None" selected>None</option>
 <option value="Descending">Max</option>
 <option value="Ascending">Min</option>
 <option value="With">With</option>
 <option value="Random">Random</option>
 <option value="First">First</option>
 </select>
 </td>

 <td width="5"></td>
 </tr>
 <tr valign="top">

 <td bgcolor="#CCCCCC" colspan="5" valign="top" height="19" > Specify
 Policies</td>

 <td width="5"></td>
 </tr>
 <tr>

 <td height="18" colspan="6" valign="top" bgcolor="#CCCCCC">Search Scoping
 Policies</td>
 </tr>
 <tr>

 <td height="35" valign="top" colspan="2">Max Upper Bound Of Offers To
 Return </td>

 <td colspan="3" valign="top" height="35">
 <input type="text" name="numOffers" size="80" value="">
 </td>

185

 <td width="5" height="35"></td>
 </tr>
 <tr>

 <td height="22" colspan="6" valign="top" bgcolor="#CCCCCC">Function Scoping
 Policies</td>
 </tr>
 <tr>

 <td height="36" valign="top" colspan="2">Min Number Of QOS Metrics To
 Match </td>

 <td colspan="3" valign="top" height="36">
 <input type="text" name="numMetrics" size="80" value="">
 </td>

 <td width="5" height="36"></td>
 </tr>
 </table>
 <p align="center">
 <input type="submit" name="SubmitForm" value="Perform Search">
 <input type="reset" name="Submit2" value="Reset Form">
 </p>
 </form>
 </body>
 </html>

ProcessUniframeQuery.jsp
<%@ page isErrorPage="false" errorPage="error.jsp"%>

<jsp:useBean id="reqProcessor" class="umm.helper.dependent.RequestProcessor"
scope="session" />
<jsp:useBean id="queryBean" class="umm.entity.beans.QueryBean" scope="session" />
<jsp:setProperty name="queryBean" property="*"/>

<%
 String[] qosMetrics = request.getParameterValues("qosMetric");
 if(qosMetrics != null)
 {
 for(int i = 0;i<qosMetrics.length;i++)
 {
 if(qosMetrics[i].equals("end2endDelay"))
 queryBean.setEnd2endDelayFlag(true);
 else
 if(qosMetrics[i].equals("availability"))
 queryBean.setAvailabilityFlag(true);
 }
 }
%>

<% reqProcessor.setQueryBean(queryBean); %>
<jsp:forward page="componentList.jsp" />

ComponentList.jsp
<html>
<head>
<meta http-equiv="PRAGMA" content="NO-CACHE">
</head>
<body bgcolor = #F8F7D9>
<%@ page import="java.util.*" %>
<%@ page import="umm.entity.beans.ComponentBean" %>
<%@ page import="umm.entity.beans.FunctionBean" %>
<%@ page import="umm.entity.beans.QueryBean" %>
<jsp:useBean id="reqProcessor" class="umm.helper.dependent.RequestProcessor"
scope="session" />
<%@ page isErrorPage="false" errorPage="error.jsp"%>

186

<table width="100%" border="0" cellspacing="1" cellpadding="0" height="83">
 <tr>

 <td bgcolor="#CCCCCC" colspan="4" valign="top" >
 URDS Search Results
 </td>
 </tr>
 <tr>

 <td valign="top" bgcolor="#CCCCCC">Component-ID</td>

 <td valign="top" bgcolor="#CCCCCC">Component Name</td>

 <td valign="top" bgcolor="#CCCCCC">Component Details</td>
 </tr>
 <tr>

<%

 Hashtable resultTable = reqProcessor.getResultTable();
 if(resultTable != null)
 {
 Enumeration e = resultTable.keys();
 if(e.hasMoreElements())
 {
 while(e.hasMoreElements())
 {
 String key = (String) e.nextElement();
 ComponentBean componentBean = (ComponentBean) resultTable.get(key);

%>

 <td valign="top" height="32"><a
href="componentDetail.jsp?id=<%=componentBean.getId()%>"><%=componentBean.getId()%></t
d>

 <td valign="top"><a
href="componentDetail.jsp?id=<%=componentBean.getId()%>"><%=componentBean.getName()%><
/td>

 <td valign="top"><a href="componentDetail.jsp?id=<%=componentBean.getId()%>">
 Component Details</td>
 </tr>
<%
 }//end while
 }//end of if e.hasMoreElements
 else
 {
 throw new Exception("No Results Matching Search Criteria");
 }//if it does not have elements

 }else
 {
 throw new Exception("No Results Matching Search Criteria");
 }//if resultTable is null

%>
 </table>

Search Home
</body>
</html>

ComponentDetail.jsp
<html>
<head>

187

<meta http-equiv="PRAGMA" content="NO-CACHE">

</head>
<body bgcolor = #F8F7D9>
<%@ page import="java.util.*" %>
<%@ page import="umm.entity.beans.ComponentBean" %>
<%@ page import="umm.entity.beans.FunctionBean" %>
<%@ page import="umm.entity.beans.QueryBean" %>
<%@ page isErrorPage="false" errorPage="error.jsp"%>
<jsp:useBean id="reqProcessor" class="umm.helper.dependent.RequestProcessor"
scope="session" />

<%
 Hashtable resultTable = reqProcessor.getResultTable();
 if(resultTable != null)
 {
 String id = request.getParameter("id");
 ComponentBean componentBean = (ComponentBean) resultTable.get(id);
%>
<table width="100%" border="0" cellspacing="0" cellpadding="0" height="530">
 <tr>
 <td bgcolor="#CCCCCC" colspan="3" height="24" >
 Component Details Summary </td>
 </tr>
 <tr valign="top">
 <td colspan="2" height="27">Name</td>
 <td width="929" height="27"><%=componentBean.getName()%></td>
 </tr>
 <tr valign="top">
 <td width="202" valign="top" nowrap>Description</td>
 <td valign="top" colspan="2">
 <textarea name="projectDescription" rows="3" cols="40"
onFocus="JavaScript:this.blur()"><%=componentBean.getDescription()%></textarea>
 </td>
 </tr>
 <tr valign="top">
 <td colspan="3" height="17" valign="top" bgcolor="#CCCCCC" >Computational
 Attributes</td>
 </tr>
 <tr valign="top">
 <td height="18" colspan="2" valign="top" >ID</td>
 <td valign="top" width="929" ><%=componentBean.getId()%></td>
 </tr>
 <tr valign="top">
 <td height="20" colspan="3" valign="top" bgcolor="#CCCCCC" >Cooperating
 Attributes</td>
 </tr>
 <tr valign="top">
 <td height="22" colspan="2" valign="top" >Pre-Processing

Collaborator(s)</td>
 <td valign="top" width="929" > <%=componentBean.getPreprocessingCollaborators()%>
 </td>
 </tr>
 <tr valign="top">
 <td height="20" colspan="3" valign="top" bgcolor="#CCCCCC" >Auxillary
Attributes</td>
 </tr>
 <tr valign="top">
 <td height="22" colspan="2" valign="top" >Mobility</td>
 <td valign="top" width="929" > <%=componentBean.getMobility()%> </td>
 </tr>
 <tr valign="top">
 <td height="18" colspan="3" valign="top" bgcolor="#CCCCCC" >QOS Metrics</td>
 </tr>
 <tr valign="top">
 <td height="18" colspan="2" valign="top" >End To End Delay</td>
 <td valign="top" width="929" > <%=componentBean.getEnd2endDelay()%> </td>
 </tr>
 <tr valign="top">

188

 <td height="22" colspan="2" valign="top" >Availability</td>
 <td valign="top" width="929" > <%=componentBean.getAvailability()%> </td>
 </tr>
 <tr valign="top">
 <td height="20" colspan="3" valign="top" bgcolor="#CCCCCC" >Functional
 Attributes</td>
 </tr>
 <tr valign="top">
 <td height="22" colspan="2" valign="top" nowrap >Technology</td>
 <td valign="top" nowrap width="929" ><%=componentBean.getTechnology()%></td>
 </tr>
 <tr valign="top">
 <td height="20" colspan="2" valign="top" >Algorithms</td>
 <td valign="top" width="929" ><%=componentBean.getAlgorithm()%></td>
 </tr>
 <tr valign="top">
 <td height="20" colspan="2" valign="top" >Complexity</td>
 <td valign="top" width="929" ><%=componentBean.getComplexity()%></td>
 </tr>
 <tr valign="top">
 <td height="85" colspan="3" valign="top" >
 <table width="100%" border="0" cellpadding="0" cellspacing="0">
 <tr>
 <td valign="top" height="26" bgcolor="#CCCCCC">Function</td>
 <td valign="top" bgcolor="#CCCCCC">Syntactic Contract</td>
 </tr>
 <%
 Vector functionVector = componentBean.getFunctionBeanList();
 int size = 0;
 if(!functionVector.isEmpty())
 {
 size = functionVector.size();

 for(int j=0;j<size;j++) {
 FunctionBean functionBean =(FunctionBean) functionVector.elementAt(j);
 %>
 <tr>
 <td valign="top"> <%=functionBean.getFunctionName()%>
 </td>
 <td valign="top"> <%=functionBean.getSyntacticContract()%>
 </td>
 </tr>
 <% } //end of for
 }//end of if
 %>
 </table>
 </td>
 </tr>
</table>
<%
 }//end if (results != null)
%>

Search Home

Back To Component List
</body>
</html>

Error.jsp
<html>
<head>
<meta http-equiv="PRAGMA" content="NO-CACHE">
</head>

<body bgcolor = #F8F7D9 text = #098D3A>
<%@ page isErrorPage="true" %>
 <table width="100%" border="0" cellspacing="0" cellpadding="1" align="center">

189

 <tr>
 <td bgcolor="#CCCCCC" valign="top" height="19" colspan="5" > Error
Page</td>
 </tr>
 <tr>
 <td valign="top" height="128">

 <%= exception.getMessage() %>

 </td>
 </tr>
 </table>

Search Home
</body>
</html>

190

LIST OF REFERENCES

[ACC97] “Access Control Abstractions”, May 1997.
http://java.sun.com/products/jdk/1.1/docs/guide/security/Acl.html

[APA] Apache HTTP Server Project, “Apache HTTP Server Version 1.3”
Http://httpd.apache.org/

[BAL95] Ballardie, T.,Crowcroft, J., “Multicast-specific Security Threats and
Counter-measures”, In Proc. Symposium on Network and Distributed System Security,
pages 2-16, San Diego,California, February 1995.

[BAL96] Ballardie, T., “Scalable Multicast Key Distribution”, RFC 1949, May 1996.

[BAR00] Barrett R. B., “Object-Oriented Natural Language Requirements Specification”,
In Proceedings of ACSC 2000,the 23rd Australasian Computer Science Conference,
January 31-February 4, 2000, Canberra, Australia, pages 24-30, January 2000.

[BEA] BEA, “BEA WebLogic Server 7.0”.
http://www.bea.com/products/weblogic/server/index.shtml

[BLU] Bluetooth Consortium, "The Bluetooth Consortium," http://www.bluetooth.com

[BLU97] Blundo, C., De Santis, A., Herzberg, A. , Kutten, S., Vaccaro, U.,Yung, M.,
“Perfectly-Secure Key Distribution for Dynamic Conferences. Information and
Computation”, December 1997.

[BOX00] Box, D., et al., “Simple Object Access Protocol (SOAP) 1.1”, W3C, May
2000,http://www.w3.org/TR/SOAP.

[BRA00] Bray, T., Paoli, J., Sperberg-McQueen, C. M. “Extensible Markup Language
(XML) 1.0 (Second Edition),” W3C, October 2000, http: //www.w3c.org/xml.

[BRA02] Brahmnath, G., Raje, R. R., Olson, A. M., Auguston, M., Bryant, B. R., Burt,
C. C., “A Quality of Service Catalog for Software Components,” to appear in
Proceedings of the 2002 Southeastern Software Engineering Conference, 2002.

191

[CAR98] Caronni, G., Waldvogel, M., Sun, D., Plattner, B., “Efficient Security for Large
and Dynamic Groups”. Technical Report TIK Technical Report No. 41, Computer
Engineering and Networks Laboratory, Swiss Federal Institute of Technology,
February 1998.

[CHR01] Christensen, E., Curbera, F., Meredith, G., Weerawarana, S., “Web Services
Description Language (WSDL) 1.1,” W3C, March 2001 http://www.w3.org/TR/wsdl.

[CHR99] Christensson, Bengt and Larsson, Olof, “Universal Plug and Play Connects
Smart Devices,” WinHEC 99, 1999.
http://www.axis.com/products/documentation/UPnP.doc

[COU01] Coulouris,G., Dollimore,J., Kindberg,T., “Distributed Systems Concepts And
Design.”, Addison-Wesley Publishers Limited (Third Edition) 2001.

[CZA00] Czarnecki, K., Eisenecker, U.W, “Generative Programming Methods, Tools,
and Applications”, Addison-Wesley, 2000.

[CZE99] Czerwinski, S. E., Zhao, B. Y., Hodes, T. D., Joseph, A. D., Katz, R. H., “An
Architecture for a Secure Service Discovery Service,” Proceedings of Mobicom '99,
1999. http://ninja.cs.berkeley.edu/dist/papers/sds-mobicom.pdf

[DES77] Data Encryption Standard, National Bureau of Standards Federal Information
Processing Standard (FIPS) Publication 46, “Data Encryption Standard”, U.S.
Department of Commerce, January 1977.

[DON99] Dondeti, R.,L., Mukherjee, S., Samal., A., “A Dual Encryption Protocol for
Scalable Secure Multicasting”. Fourth International Symposium on Computer and
Communications, July 1999.

[ECB80] Electronic Codebook Mode, The National Institute of Standards and
Technology (NIST) Federal Information Processing Standard (FIPS) Publication 81,
"DES Modes of Operation," U.S. Department of Commerce, December 1980.

[EDW99] Edwards, W. K, “Core Jini”, Upper Saddle River, NJ: Prentice Hall, 1999.

[ERI94] Eriksson, H., “MBONE: The Multicast Bone”, Communications of the ACM,
37(8):54-60, August 1994.

[GAM95] Gamma, E., Helm, R., Johnson, R., Vlissides, J., “Design Patterns Elements of
Reusable Object-Orientated Software”, Addison-Wesley, 1995

[GOL99] Goland, Y., Cai, T., Leach P., Gu, Y., and Albright, S., “Simple Service
Discovery Protocol,” IETF, Draft draft-cai-ssdp-v1-03, October 28 1999.
http://search.ietf.org/internet-drafts/draft-cai-ssdp-v1-03.txt

192

[GON94] Gong, L., Shacham, N., “Elements of trusted multicasting”. In Proc. IEEE Intl.
Conf. on Network Protocols, pages 23-30, Boston, MA, USA, October 1994.

[GOV00] Govea, J., Barbeau, M., “Comparison of Bandwidth Usage: Service Location
Protocol and Jini”, September 2000.

[GUL96] Gulbrandsen, A., Vixie, P., “A DNS RR for Specifying the Location of
Services (DNS SRV),” IETF RFC 2502, October 1996. http://www.rfc-
editor.org/rfc/rfc2052.txt

[GUT99] Guttman, Erik, “Service Location Protocol : Automatic Discovery of IP
Network Services,”IEEE Internet Computing, vol. 3, no. 4, pp. 71-80, 1999.
http://computer.org/internet/

[GUT99a] Guttman, E., Perkins, C., Veizades, J., and Day, M., “Service Location
Protocol, Version 2,” IETF, RFC 2608, June 1999.
http://www.rfc-editor.org/rfc/rfc2608.txt

[GUT99b] Guttman, E., “Service Location Protocol: Automatic Discovery of IP Network
Services,” IEEE Internet Computing, vol. 3, no. 4, 1999, pp. 71-80.

[GUT99c] Guttman, E., Perkins, C., Kempf, J., “Service Templates and Service:
Schemes,” IETF, RFC 2609, June 1999. http://www.rfc-editor.org/rfc/rfc2609.txt

[HAR97] Harney, H., Muckenhirn, C., “Group Key Management Protocol (GKMP)
Architecture”, RFC 2094, July 1997.

[HOD99] Hodes, Todd and Katz, Randy H., “A Document-based Framework for Internet
Application Control,” Second USENIX Symposium on Internet Technologies and
Systems, Boulder, CO, 1999.
 http://daedalus.cs.berkeley.edu/publications/docu-usits99.ps.gz

[IBMa] IBM, “HTTP Server version 2.0”.
 http://www-3.ibm.com/software/webservers/httpservers/

[IBMb] IBM, “WebSphere Application Server, Version 4.0”.
http://www-3.ibm.com/software/webservers/appserv/

[IBM02] IBM, “IBM WebSphere V4.0 Advanced Edition Handbook”, Chapter 17,
March 2002. http://www.redbooks.ibm.com/redpieces/pdfs/sg246176.pdf

[IPL] iPlanet, “iPlanet Web Server Enterprise Edition 6.0”.
http://docs.iplanet.com/docs/manuals/enterprise.html#60

193

[ITU97] ITU/ISO Recommendation X.500(08/97): Open Systems Interconnection – The
Directory:Overview of concepts, models and services. International Telecommunication
Union, 1997.

[JUR00] Jurafsky, D., Martin, J. H. Speech and Language Processing. Prentice Hall,
2000.

[LEE02] Lee, B.-S. and Bryant, Barrett R., “Automated Conversion from Requirements
Documentation to an Object-Oriented Formal Specification Language,” to appear in
Proceedings of SAC 2002, the ACM Symposium on Applied Computing, 2002.

[LUQ01] Luqi, Berzins, V., Ge, J., Shing, M., Auguston, M., Bryant, B. R., Kin, B. K.,
“DCAPS – Architecture for Distributed Computer Aided Prototyping System,”
Proceedings of RSP 2001, the 12th Rapid Systems Prototyping Workshop, 2001, pp. 103-
108.

[MCG00] McGrath, R., “ Discovery and Its Discontents: Discovery Protocols for
Ubiquitous Computing”, Presented at Center for Excellence in Space Data and
Information Science NASA Goddard Space Flight Center, April 2000.

[MIC] Microsoft Corporation, “Internet Information Services V
5.0”.http://www.microsoft.com/windows2000/server/evaluation/features/web.asp

[MIC98] Microsoft Corporation. DCOM Specifications,
http://www.microsoft.com/oledev/olecom, 1998.

[MIT97] Mittra, S., “Iolus: A Framework for Scalable Secure Multicasting”, In Proc.
ACM SIGCOMM, pages 277-288, Cannes, France, September 1997.

[MOC87] Mockapetris, P., “Domain Names-Implementation and Specification,” IETF
RFC 1035, October 1987. http://www.rfc-editor.org/rfc/rfc1035.txt

[NIN02] Ninja, “The Ninja Project,” http://ninja.cs.berkeley.edu, 2002.

[OMG00] Object Management Group, “Trading Object Service Specification,” Object
Management Group 2000. ftp://ftp.omg.org/pub/docs/formal/00-06-27.pdf.

[OMG01] Object Management Group,”Naming Service Specification” Object
Management Group 2001.ftp://ftp.omg.org/pub/docs/formal/01-02-65.pdf

[ORF97] Orfali R, and Harkey, D. Client/Server Programming with JAVA and CORBA.
John Wiley & Sons, Inc., 1997.

[PER99] Perkins, C., Guttman, E., “DHCP Options for Service Location Protocol,” IETF
RFC 2610, June 1999. http://www.rfc-editor.org/rfc/rfc2610.txt

194

[RAJ00] Raje, R. R., “UMM: Unified Meta-object Model for Open Distributed Systems”,
Proceedings of ICA3PP 2000, 4th IEEE Int. Conf. Algorithms and Architecture for
Parallel Processing", 2000, pp.454-465.

[RAJ01] Raje, R., Auguston, M., Bryant, B. R., Olson, A., Burt, C., “A Unified Approach
for the Integration of Distributed Heterogeneous Software Components”, Proceedings of
the Monterey Workshop on Engineering Automation for Software Intensive System
Integration, 2001, pp. 109-119.

[RAJ02] Raje, R., Auguston, M., Bryant, B. R., Olson, A., Burt, C., “A Quality of
Service-based Framework for Creating Distributed Heterogeneous Software
Components”, Technical Report, Department of Computer and Information Science,
Indiana University Purdue University Indianapolis, 2002.

[RMI] Sun Microsystems, "Java Remote Method Invocation (RMI)",
http://java.sun.com/products/jdk/1.2/guide/rmi/index.html

[RSA93] RSA Laboratories, "PKCS #5: Password-Based Encryption Standard," version
1.5, November 1993.

[SAL] Salutation Consortium, "Salutation," http://www.salutation.org

[SAL99a] Salutation Consortium, “Salutation Architecture Specification (Part-1)
Version 2.1,” The Salutation Consortium 1999. http://www.salutation.org

[SAL99b] Salutation Consortium, “Salutation Architecture Specification (Part-2),” The
Salutation Consortium 1999. http://www.salutation.org

[STA95] Stallings, W.,“Network and Internetwork Security”, Prentice-Hall Inc., 1995.

[SUNa] Sun Microsystems, “Designing Enterprise Applications with the J2EETM
Platform”.http://java.sun.com/blueprints/guidelines/designing_enterprise_applications/

[SUNb] Sun Microsystems, “Java 2 Platform, Standard Edition (J2SETM) v 1.4.0
Overview”. http://java.sun.com/j2se/1.4/

[SUN00] Sun Microsystems, “JavaTM Cryptography Extension 1.2.1 API Specification
& Reference”, June 2000.
http://java.sun.com/products/jce/doc/guide/API_users_guide.html

[SUN01a] Sun Microsystems, “Jini Architecture Specification, Version 1.2,” Sun
Microsystems, December 2001, http://www.sun.com/jini/.

195

[SUN01b] Sun Microsystems, “JavaTM 2 Platform Enterprise Edition Specification,
Version 1.3”, Sun Microsystems, August 2001.
http://java.sun.com/j2ee/j2ee-1_3-fr-spec.pdf

[SUN02] Sun Microsystems, “JavaTM Cryptography Architecture API Specification &
Reference”, February 2002.
http://java.sun.com/j2se/1.4/docs/guide/security/CryptoSpec.html

[UDD00] uddi.org, “UDDI Technical White Paper”, September
2000,http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf

[UPNP99] Microsoft Corporation, “Universal Plug and Play Device Architecture
Reference Specification,” Microsoft Corporation, November 10, 1999.
http://www.microsoft.com/hwdev/UPnP

[VAN65] van Wijngaarden, A. “Orthogonal Design and Description of a Formal
Language”, Technical report, Mathematisch Centrum, Amsterdam, 1965.

[W3C] W3C, World Wide Web Consortium, “Leading the Web to its Full Potential”.
http://www.w3.org/

[WAH97] Wahl, M., Howes, T., Kille, S., “Lightweight Directory Access Protocol (v3),”
IETF RFC 2251, December 1997. http://www.rfc-editor.org/rfc/rfc2251.txt

[WAL97] Wallner, D., Harder, E., Agee, R., “Key Management for Multicast: Issues and
Architecture”, IETF Draft, July 1997.

[WEL] Welsh, Matt, "Ninja RMI: A Free Java RMI,"
http://www.cs.berkeley.edu/~mdw/proj/ninja/ninjarmi.html

[WIL99] Wilcox,M., ”Implementing LDAP”, Wrox Press Ltd.,1999

[YOU95] Young, D., “Object-Orientated Programming with C++ and OSF/Motif”,
Prentice-Hall, 1995.

[ZIN95] Zinky, J.A., Bakken, D.E., and Schantz, R. Overview of Quality of Service for
Distributed Objects. In Proceedings of the Fifth IEEE Dual Use Conference, 1995.

